
Software Engineering
Lecture 13: Testing and Debugging — Testing

Peter Thiemann

University of Freiburg, Germany

SS 2014



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Recap

I Testing – detect the presence of bugs by observing failures

I Debugging – find the defect causing a certain failure

I To decide when a program fails we need a specification
(except for obvious failure such as a program crash)

I Writing a specification is difficult

I Finding a good set of test cases is often difficult

I Absence of failing tests does not imply absence of defects

I But making testing part of the development makes claims
about the software more credible

I Program Verification guarantees absence of defects

I Preferable, but verification is often economically impossible



Contents of Testing part

I Specifications (informal)
I Test Cases

I How to write a test case
I How to build a good test suite (collection of test cases)



Contents of Testing part

I Specifications (informal)

I Test Cases
I How to write a test case
I How to build a good test suite (collection of test cases)



Contents of Testing part

I Specifications (informal)
I Test Cases

I How to write a test case
I How to build a good test suite (collection of test cases)



Contents of Testing part

I Specifications (informal)
I Test Cases

I How to write a test case

I How to build a good test suite (collection of test cases)



Contents of Testing part

I Specifications (informal)
I Test Cases

I How to write a test case
I How to build a good test suite (collection of test cases)



Specifications

I Specification determines
I what a piece of code should do
I what it requires to do its job

I A specification is a contract between the implementor and the
user of the implemented code.

I A specification consists of two parts:
I Requires (precondition) – what the user should fulfill before

calling the code
I Ensures (postcondition) – what the implementor promises

about the result of the execution (provided requires were
fulfilled)



Specification Example

1 public static int find_min(int[] a) { ... }



Specification Example

1 public static int find_min(int[] a) { ... }

Specification

Requires:
Ensures: Result is the minimum element in a



Specification Example

1 public static int find_min(int[] a) { ... }

Specification

Requires: a is non-null
Ensures: Result is the minimum element in a



Specification Example

1 public static int find_min(int[] a) { ... }

Specification

Requires: a is non-null
Ensures: Result is a minimum element in a



Specification Example

1 public static int find_min(int[] a) { ... }

Specification

Requires: a is non-null
Ensures: Result is equal to the minimum element in a



Specification Example

1 public static int find_min(int[] a) { ... }

Specification

Requires: a is non-null
Ensures: Result is less than or equal to all elements in a



Specification Example

1 public static int find_min(int[] a) { ... }

Specification

Requires: a is non-null

Ensures: Result is less than or equal to all elements in a

and equal to at least one element in a



Specification Example

1 public static int find_min(int[] a) {

2 int x, i;

3 x = a[0];

4 for (i = 1; i < a.length;i ++) {

5 if (a[i] < x) x = a[i];

6 }

7 return x;

8 }

Specification

Requires: a is non-null

Ensures: Result is less than or equal to all elements in a

and equal to at least one element in a



Specification Example

1 public static int find_min(int[] a) {

2 int x, i;

3 x = a[0];

4 for (i = 1; i < a.length;i ++) {

5 if (a[i] < x) x = a[i];

6 }

7 return x;

8 }

Specification

Requires: a is non-null and contains at least one element

Ensures: Result is less than or equal to all elements in a

and equal to at least one element in a



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong

Specification

Requires: a is non-null
Ensures: Result is the minimum element in a



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant

I Incomplete – more can be said about the behaviour
I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong

Specification

Requires: a is non-null
Ensures: Result is a minimum element in a



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak

I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong

Specification

Requires: a is non-null
Ensures: Result is less than or equal to all elements in a



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong

Specification

Requires: a is non-null and contains exactly one element

Ensures: Result is less than or equal to all elements in a

and equal to at least one element in a



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect

I Precondition is too weak
I Postcondition is too strong



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak

I Postcondition is too strong

Specification

Requires: a is non-null

Ensures: Result is less than or equal to all elements in a

and equal to at least one element in a



What can be wrong about a specification?

I Badly stated – does not make sense

I Vague – unclear what is meant
I Incomplete – more can be said about the behaviour

I Postcondition is too weak
I Precondition is too strong

I Incorrect
I Precondition is too weak
I Postcondition is too strong

Specification

Requires: a is non-null and contains at least one element

Ensures: Result is less than or equal to all elements in
a and equal to at least one element in a, and
result is greater than 0



What can go wrong when writing specifications?

Are all these cases of “bad” specifications?

I We don’t want incorrect specifications.

I A vague specification is open to misunderstanding.

I An imcomplete specification can be useful.



Example: Strong or Weak Precondition

Example

What does this method do?

1 public static int[] insert(int[] x, int n)

2 {

3 int[] y = new int[x.length + 1];

4 int i;

5 for (i = 0; i < x.length; i++) {

6 if (n <= x[i]) break;

7 y[i] = x[i];

8 }

9 y[i] = n;

10 for (; i < x.length; i++) {

11 y[i+1] = x[i];

12 }

13 return y;

14 }



Example, cont’d

Example

What does this method do?

1 public static int[] insert(int[] x, int n)

2 { ... }

Specification

Requires:
Ensures:



Example, cont’d

Example

What does this method do?

1 public static int[] insert(int[] x, int n)

2 { ... }

Specification

Requires: x is non-null.
Ensures: Result is equal to x with n inserted in it.



Example, cont’d

Example

What does this method do?

1 public static int[] insert(int[] x, int n)

2 { ... }

Specification

Requires: x is non-null.

Ensures: Result is equal to x with n inserted in it and
result is sorted in ascending order.



Example, cont’d

Example

What does this method do?

1 public static int[] insert(int[] x, int n)

2 { ... }

Specification

Requires: x is non-null and sorted in ascending order.

Ensures: Result is equal to x with n inserted in it and
result is sorted in ascending order.



Specification of a Class

Class invariant
I A class invariant is a condition about the state of each class

instance that should be maintained throughout its existence
I We will focus on weak invariants

I It should hold between calls to methods of the class,
I but not during the execution of such methods

Class specification consists of

I Class invariant

I Requires and ensures of the methods



Specification of a Class

Class invariant
I A class invariant is a condition about the state of each class

instance that should be maintained throughout its existence
I We will focus on weak invariants

I It should hold between calls to methods of the class,
I but not during the execution of such methods

Class specification consists of

I Class invariant

I Requires and ensures of the methods



Example, class invariant

1 public class HashSet {

2 private Object [] arr;

3 int nobj;

4
5 public void insert(Object o) { ... }

6 ...

7 }

Class Invariant
I nobj should be equal to the number of non-null elements in

arr, and

I for each index i in range of arr such that arr[i ] is non-null,
all elements between indices arr[i ].hash() and i are non-null,
and

I there are no two non-null elements of arr that are equal



Example, class invariant

1 public class HashSet {

2 private Object [] arr;

3 int nobj;

4
5 public void insert(Object o) { ... }

6 ...

7 }

Class Invariant

I nobj should be equal to the number of non-null elements in
arr, and

I for each index i in range of arr such that arr[i ] is non-null,
all elements between indices arr[i ].hash() and i are non-null,
and

I there are no two non-null elements of arr that are equal



Example, class invariant

1 public class HashSet {

2 private Object [] arr;

3 int nobj;

4
5 public void insert(Object o) { ... }

6 ...

7 }

Class Invariant
I nobj should be equal to the number of non-null elements in

arr, and

I for each index i in range of arr such that arr[i ] is non-null,
all elements between indices arr[i ].hash() and i are non-null,
and

I there are no two non-null elements of arr that are equal



Example, class invariant

1 public class HashSet {

2 private Object [] arr;

3 int nobj;

4
5 public void insert(Object o) { ... }

6 ...

7 }

Class Invariant
I nobj should be equal to the number of non-null elements in

arr, and

I for each index i in range of arr such that arr[i ] is non-null,
all elements between indices arr[i ].hash() and i are non-null,
and

I there are no two non-null elements of arr that are equal



Example, class invariant

1 public class HashSet {

2 private Object [] arr;

3 int nobj;

4
5 public void insert(Object o) { ... }

6 ...

7 }

Class Invariant
I nobj should be equal to the number of non-null elements in

arr, and

I for each index i in range of arr such that arr[i ] is non-null,
all elements between indices arr[i ].hash() and i are non-null,
and

I there are no two non-null elements of arr that are equal



Testing



Software testing

What we look at here
I Systematic – general rules for how to write test cases

I Repeatable – be able to run tests over and over again

What we don’t look at here
I Running a program to see if anything goes wrong

I Letting a lot of people run the program to see if anything
goes wrong (Beta-testing)



Software testing

What we look at here
I Systematic – general rules for how to write test cases

I Repeatable – be able to run tests over and over again

What we don’t look at here
I Running a program to see if anything goes wrong

I Letting a lot of people run the program to see if anything
goes wrong (Beta-testing)



Testing on Different Levels

I Unit Testing – testing a small unit of a system
Requires that the behaviour of the unit has been specificied.
In Java this often corresponds to testing a method or a class.

I Integration Testing – testing the interaction between two or
more units

I System Testing – testing a whole system against the
specification of its externally observable behaviour
System testing is mostly useful for convincing about the
correctness. Less useful for finding bugs because the infection
phase going from defect to failure is usually complex and
difficult to unwind.

The code that is being tested is called the IUT (implementation
under test).



Testing on Different Levels

I Unit Testing – testing a small unit of a system
Requires that the behaviour of the unit has been specificied.
In Java this often corresponds to testing a method or a class.

I Integration Testing – testing the interaction between two or
more units

I System Testing – testing a whole system against the
specification of its externally observable behaviour
System testing is mostly useful for convincing about the
correctness. Less useful for finding bugs because the infection
phase going from defect to failure is usually complex and
difficult to unwind.

The code that is being tested is called the IUT (implementation
under test).



Testing on Different Levels

I Unit Testing – testing a small unit of a system
Requires that the behaviour of the unit has been specificied.
In Java this often corresponds to testing a method or a class.

I Integration Testing – testing the interaction between two or
more units

I System Testing – testing a whole system against the
specification of its externally observable behaviour
System testing is mostly useful for convincing about the
correctness. Less useful for finding bugs because the infection
phase going from defect to failure is usually complex and
difficult to unwind.

The code that is being tested is called the IUT (implementation
under test).



Testing on Different Levels

I Unit Testing – testing a small unit of a system
Requires that the behaviour of the unit has been specificied.
In Java this often corresponds to testing a method or a class.

I Integration Testing – testing the interaction between two or
more units

I System Testing – testing a whole system against the
specification of its externally observable behaviour
System testing is mostly useful for convincing about the
correctness. Less useful for finding bugs because the infection
phase going from defect to failure is usually complex and
difficult to unwind.

The code that is being tested is called the IUT (implementation
under test).



Testing Non-Functional Requirements
Not considered further

I Performance testing or load testing

I Stability testing

I Usability testing

I Security testing



When Should Testing Take Place?

The sooner a bug is found, the better.

Testing should start early.
Extreme case: Test-driven program development

but

Testing early means a lot of unit testing which requires a lot of
specifications.

But writing specifications for the units of a system is already
needed for a large project when programming by contract.

Tested units may be replaced later on, making the tests
useless.

On the other hand, writing and running tests often gives a deep
understanding of the program. The need to replace the unit may
have been realized during the testing activities.



When Should Testing Take Place?

The sooner a bug is found, the better.

Testing should start early.
Extreme case: Test-driven program development

but

Testing early means a lot of unit testing which requires a lot of
specifications.

But writing specifications for the units of a system is already
needed for a large project when programming by contract.

Tested units may be replaced later on, making the tests
useless.

On the other hand, writing and running tests often gives a deep
understanding of the program. The need to replace the unit may
have been realized during the testing activities.



When Should Testing Take Place?

The sooner a bug is found, the better.

Testing should start early.
Extreme case: Test-driven program development

but

Testing early means a lot of unit testing which requires a lot of
specifications.

But writing specifications for the units of a system is already
needed for a large project when programming by contract.

Tested units may be replaced later on, making the tests
useless.

On the other hand, writing and running tests often gives a deep
understanding of the program. The need to replace the unit may
have been realized during the testing activities.



Systematic testing

I Use precise methods to design correct tests

I Each individual test is called a test case

I Organize collections of related test cases in test suites

I Use precise methods to make sure that a test suite has a good
coverage of the different cases of usage



Systematic testing

I Use precise methods to design correct tests

I Each individual test is called a test case

I Organize collections of related test cases in test suites

I Use precise methods to make sure that a test suite has a good
coverage of the different cases of usage



Systematic testing

I Use precise methods to design correct tests

I Each individual test is called a test case

I Organize collections of related test cases in test suites

I Use precise methods to make sure that a test suite has a good
coverage of the different cases of usage



Systematic testing

I Use precise methods to design correct tests

I Each individual test is called a test case

I Organize collections of related test cases in test suites

I Use precise methods to make sure that a test suite has a good
coverage of the different cases of usage



Repeatable testing

The basic idea is to write code that performs the tests.

I A tool can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus
stored in an organised way

I When a bug has been fixed, the tests can be rerun to check if
the failure is gone

I Whenever the code is extended, all old test cases can be rerun
to check that nothing is broken (regression testing)

JUnit is a tool for organizing, writing, and running test cases. It
provides:

I Functionality that is needed repeatedly when writing test cases

I A way to annotate methods as test cases

I A way to run test cases automatically



Repeatable testing

The basic idea is to write code that performs the tests.

I A tool can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus
stored in an organised way

I When a bug has been fixed, the tests can be rerun to check if
the failure is gone

I Whenever the code is extended, all old test cases can be rerun
to check that nothing is broken (regression testing)

JUnit is a tool for organizing, writing, and running test cases. It
provides:

I Functionality that is needed repeatedly when writing test cases

I A way to annotate methods as test cases

I A way to run test cases automatically



Repeatable testing

The basic idea is to write code that performs the tests.

I A tool can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus
stored in an organised way

I When a bug has been fixed, the tests can be rerun to check if
the failure is gone

I Whenever the code is extended, all old test cases can be rerun
to check that nothing is broken (regression testing)

JUnit is a tool for organizing, writing, and running test cases. It
provides:

I Functionality that is needed repeatedly when writing test cases

I A way to annotate methods as test cases

I A way to run test cases automatically



Repeatable testing

The basic idea is to write code that performs the tests.

I A tool can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus
stored in an organised way

I When a bug has been fixed, the tests can be rerun to check if
the failure is gone

I Whenever the code is extended, all old test cases can be rerun
to check that nothing is broken (regression testing)

JUnit is a tool for organizing, writing, and running test cases. It
provides:

I Functionality that is needed repeatedly when writing test cases

I A way to annotate methods as test cases

I A way to run test cases automatically



Repeatable testing

The basic idea is to write code that performs the tests.

I A tool can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus
stored in an organised way

I When a bug has been fixed, the tests can be rerun to check if
the failure is gone

I Whenever the code is extended, all old test cases can be rerun
to check that nothing is broken (regression testing)

JUnit is a tool for organizing, writing, and running test cases. It
provides:

I Functionality that is needed repeatedly when writing test cases

I A way to annotate methods as test cases

I A way to run test cases automatically



Repeatable testing

The basic idea is to write code that performs the tests.

I A tool can automatically run a large collection of tests

I The testing code can be integrated into the actual code, thus
stored in an organised way

I When a bug has been fixed, the tests can be rerun to check if
the failure is gone

I Whenever the code is extended, all old test cases can be rerun
to check that nothing is broken (regression testing)

JUnit is a tool for organizing, writing, and running test cases. It
provides:

I Functionality that is needed repeatedly when writing test cases

I A way to annotate methods as test cases

I A way to run test cases automatically



Testing influences code quality

I Testing should result in removal of defects

I When writing specifications and test cases for units, the
responsibilities of the different parts become clearer, which
promotes good OO programming style (low coupling)

I To enable automatic program testing, it is important to
separate IO and functionality (design for testability)



Testing influences code quality

I Testing should result in removal of defects

I When writing specifications and test cases for units, the
responsibilities of the different parts become clearer, which
promotes good OO programming style (low coupling)

I To enable automatic program testing, it is important to
separate IO and functionality (design for testability)



Testing influences code quality

I Testing should result in removal of defects

I When writing specifications and test cases for units, the
responsibilities of the different parts become clearer, which
promotes good OO programming style (low coupling)

I To enable automatic program testing, it is important to
separate IO and functionality (design for testability)



What does a test case consist of?

Test case
I (Set up) Initialisation (of class instance and input arguments)

I Call to the method of the IUT

I A test oracle which decides if the test succeeded or failed

I (Tear down) Finalization; relinquish resources etc

I The test oracle is vital to run tests automatically



What does a test case consist of?

Test case
I (Set up) Initialisation (of class instance and input arguments)

I Call to the method of the IUT

I A test oracle which decides if the test succeeded or failed

I (Tear down) Finalization; relinquish resources etc

I The test oracle is vital to run tests automatically



Demo

Small demo showing basics of how to use JUnit



Summary, and what’s next?

Summary

I Specifications (motivation, contracts, pre- and postconditions,
what to think about)

I Testing (motivation, different kinds of testing, role in software
development, junit)

What’s next?
I More examples of test cases, presenting aspects of writing test

cases and features of JUnit

I How to write a good test case?

I How to construct a good collection of test cases (test suite)?


	Introduction
	Specifications
	Testing

