Library Norm
Exercise: 1 star
Where do we fail if we attempt to prove normalization by a straightforward induction on the size of a well-typed term?
☐
Language
Inductive ty : Type :=
| TBool : ty
| TArrow : ty → ty → ty
| TProd : ty → ty → ty
.
Tactic Notation "T_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "TBool" | Case_aux c "TArrow" | Case_aux c "TProd" ].
Inductive tm : Type :=
| tvar : id → tm
| tapp : tm → tm → tm
| tabs : id → ty → tm → tm
| tpair : tm → tm → tm
| tfst : tm → tm
| tsnd : tm → tm
| ttrue : tm
| tfalse : tm
| tif : tm → tm → tm → tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp" | Case_aux c "tabs"
| Case_aux c "tpair" | Case_aux c "tfst" | Case_aux c "tsnd"
| Case_aux c "ttrue" | Case_aux c "tfalse" | Case_aux c "tif" ].
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar y ⇒ if eq_id_dec x y then s else t
| tabs y T t1 ⇒ tabs y T (if eq_id_dec x y then t1 else (subst x s t1))
| tapp t1 t2 ⇒ tapp (subst x s t1) (subst x s t2)
| tpair t1 t2 ⇒ tpair (subst x s t1) (subst x s t2)
| tfst t1 ⇒ tfst (subst x s t1)
| tsnd t1 ⇒ tsnd (subst x s t1)
| ttrue ⇒ ttrue
| tfalse ⇒ tfalse
| tif t0 t1 t2 ⇒ tif (subst x s t0) (subst x s t1) (subst x s t2)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
Inductive value : tm → Prop :=
| v_abs : ∀ x T11 t12,
value (tabs x T11 t12)
| v_pair : ∀ v1 v2,
value v1 →
value v2 →
value (tpair v1 v2)
| v_true : value ttrue
| v_false : value tfalse
.
Hint Constructors value.
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀ x T11 t12 v2,
value v2 →
(tapp (tabs x T11 t12) v2) ==> [x:=v2]t12
| ST_App1 : ∀ t1 t1' t2,
t1 ==> t1' →
(tapp t1 t2) ==> (tapp t1' t2)
| ST_App2 : ∀ v1 t2 t2',
value v1 →
t2 ==> t2' →
(tapp v1 t2) ==> (tapp v1 t2')
| ST_Pair1 : ∀ t1 t1' t2,
t1 ==> t1' →
(tpair t1 t2) ==> (tpair t1' t2)
| ST_Pair2 : ∀ v1 t2 t2',
value v1 →
t2 ==> t2' →
(tpair v1 t2) ==> (tpair v1 t2')
| ST_Fst : ∀ t1 t1',
t1 ==> t1' →
(tfst t1) ==> (tfst t1')
| ST_FstPair : ∀ v1 v2,
value v1 →
value v2 →
(tfst (tpair v1 v2)) ==> v1
| ST_Snd : ∀ t1 t1',
t1 ==> t1' →
(tsnd t1) ==> (tsnd t1')
| ST_SndPair : ∀ v1 v2,
value v1 →
value v2 →
(tsnd (tpair v1 v2)) ==> v2
| ST_IfTrue : ∀ t1 t2,
(tif ttrue t1 t2) ==> t1
| ST_IfFalse : ∀ t1 t2,
(tif tfalse t1 t2) ==> t2
| ST_If : ∀ t0 t0' t1 t2,
t0 ==> t0' →
(tif t0 t1 t2) ==> (tif t0' t1 t2)
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1" | Case_aux c "ST_App2"
| Case_aux c "ST_Pair1" | Case_aux c "ST_Pair2"
| Case_aux c "ST_Fst" | Case_aux c "ST_FstPair"
| Case_aux c "ST_Snd" | Case_aux c "ST_SndPair"
| Case_aux c "ST_IfTrue" | Case_aux c "ST_IfFalse" | Case_aux c "ST_If" ].
Notation multistep := (multi step).
Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step.
Notation step_normal_form := (normal_form step).
Lemma value__normal : ∀ t, value t → step_normal_form t.
Proof with eauto.
intros t H; induction H; intros [t' ST]; inversion ST...
Qed.
Definition context := partial_map ty.
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀ Gamma x T,
Gamma x = Some T →
has_type Gamma (tvar x) T
| T_Abs : ∀ Gamma x T11 T12 t12,
has_type (extend Gamma x T11) t12 T12 →
has_type Gamma (tabs x T11 t12) (TArrow T11 T12)
| T_App : ∀ T1 T2 Gamma t1 t2,
has_type Gamma t1 (TArrow T1 T2) →
has_type Gamma t2 T1 →
has_type Gamma (tapp t1 t2) T2
| T_Pair : ∀ Gamma t1 t2 T1 T2,
has_type Gamma t1 T1 →
has_type Gamma t2 T2 →
has_type Gamma (tpair t1 t2) (TProd T1 T2)
| T_Fst : ∀ Gamma t T1 T2,
has_type Gamma t (TProd T1 T2) →
has_type Gamma (tfst t) T1
| T_Snd : ∀ Gamma t T1 T2,
has_type Gamma t (TProd T1 T2) →
has_type Gamma (tsnd t) T2
| T_True : ∀ Gamma,
has_type Gamma ttrue TBool
| T_False : ∀ Gamma,
has_type Gamma tfalse TBool
| T_If : ∀ Gamma t0 t1 t2 T,
has_type Gamma t0 TBool →
has_type Gamma t1 T →
has_type Gamma t2 T →
has_type Gamma (tif t0 t1 t2) T
.
Hint Constructors has_type.
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_Var" | Case_aux c "T_Abs" | Case_aux c "T_App"
| Case_aux c "T_Pair" | Case_aux c "T_Fst" | Case_aux c "T_Snd"
| Case_aux c "T_True" | Case_aux c "T_False" | Case_aux c "T_If" ].
Hint Extern 2 (has_type _ (tapp _ _) _) ⇒ eapply T_App; auto.
Hint Extern 2 (_ = _) ⇒ compute; reflexivity.
Inductive appears_free_in : id → tm → Prop :=
| afi_var : ∀ x,
appears_free_in x (tvar x)
| afi_app1 : ∀ x t1 t2,
appears_free_in x t1 → appears_free_in x (tapp t1 t2)
| afi_app2 : ∀ x t1 t2,
appears_free_in x t2 → appears_free_in x (tapp t1 t2)
| afi_abs : ∀ x y T11 t12,
y ≠ x →
appears_free_in x t12 →
appears_free_in x (tabs y T11 t12)
| afi_pair1 : ∀ x t1 t2,
appears_free_in x t1 →
appears_free_in x (tpair t1 t2)
| afi_pair2 : ∀ x t1 t2,
appears_free_in x t2 →
appears_free_in x (tpair t1 t2)
| afi_fst : ∀ x t,
appears_free_in x t →
appears_free_in x (tfst t)
| afi_snd : ∀ x t,
appears_free_in x t →
appears_free_in x (tsnd t)
| afi_if0 : ∀ x t0 t1 t2,
appears_free_in x t0 →
appears_free_in x (tif t0 t1 t2)
| afi_if1 : ∀ x t0 t1 t2,
appears_free_in x t1 →
appears_free_in x (tif t0 t1 t2)
| afi_if2 : ∀ x t0 t1 t2,
appears_free_in x t2 →
appears_free_in x (tif t0 t1 t2)
.
Hint Constructors appears_free_in.
Definition closed (t:tm) :=
∀ x, ¬ appears_free_in x t.
Lemma context_invariance : ∀ Gamma Gamma' t S,
has_type Gamma t S →
(∀ x, appears_free_in x t → Gamma x = Gamma' x) →
has_type Gamma' t S.
Proof with eauto.
intros. generalize dependent Gamma'.
has_type_cases (induction H) Case;
intros Gamma' Heqv...
Case "T_Var".
apply T_Var... rewrite <- Heqv...
Case "T_Abs".
apply T_Abs... apply IHhas_type. intros y Hafi.
unfold extend. destruct (eq_id_dec x y)...
Case "T_Pair".
apply T_Pair...
Case "T_If".
eapply T_If...
Qed.
Lemma free_in_context : ∀ x t T Gamma,
appears_free_in x t →
has_type Gamma t T →
∃ T', Gamma x = Some T'.
Proof with eauto.
intros x t T Gamma Hafi Htyp.
has_type_cases (induction Htyp) Case; inversion Hafi; subst...
Case "T_Abs".
destruct IHHtyp as [T' Hctx]... ∃ T'.
unfold extend in Hctx.
rewrite neq_id in Hctx...
Qed.
Corollary typable_empty__closed : ∀ t T,
has_type empty t T →
closed t.
Proof.
intros. unfold closed. intros x H1.
destruct (free_in_context _ _ _ _ H1 H) as [T' C].
inversion C. Qed.
Lemma substitution_preserves_typing : ∀ Gamma x U v t S,
has_type (extend Gamma x U) t S →
has_type empty v U →
has_type Gamma ([x:=v]t) S.
Proof with eauto.
intros Gamma x U v t S Htypt Htypv.
generalize dependent Gamma. generalize dependent S.
t_cases (induction t) Case;
intros S Gamma Htypt; simpl; inversion Htypt; subst...
Case "tvar".
simpl. rename i into y.
destruct (eq_id_dec x y).
SCase "x=y".
subst.
unfold extend in H1. rewrite eq_id in H1.
inversion H1; subst. clear H1.
eapply context_invariance...
intros x Hcontra.
destruct (free_in_context _ _ S empty Hcontra) as [T' HT']...
inversion HT'.
SCase "x<>y".
apply T_Var... unfold extend in H1. rewrite neq_id in H1...
Case "tabs".
rename i into y. rename t into T11.
apply T_Abs...
destruct (eq_id_dec x y).
SCase "x=y".
eapply context_invariance...
subst.
intros x Hafi. unfold extend.
destruct (eq_id_dec y x)...
SCase "x<>y".
apply IHt. eapply context_invariance...
intros z Hafi. unfold extend.
destruct (eq_id_dec y z)...
subst. rewrite neq_id...
Qed.
Theorem preservation : ∀ t t' T,
has_type empty t T →
t ==> t' →
has_type empty t' T.
Proof with eauto.
intros t t' T HT.
remember (@empty ty) as Gamma. generalize dependent HeqGamma.
generalize dependent t'.
has_type_cases (induction HT) Case;
intros t' HeqGamma HE; subst; inversion HE; subst...
Case "T_App".
inversion HE; subst...
SCase "ST_AppAbs".
apply substitution_preserves_typing with T1...
inversion HT1...
Case "T_Fst".
inversion HT...
Case "T_Snd".
inversion HT...
Qed.
☐
Normalization
A trivial fact:
Lemma value_halts : ∀ v, value v → halts v.
Proof.
intros v H. unfold halts.
∃ v. split.
apply multi_refl.
assumption.
Qed.
The key issue in the normalization proof (as in many proofs by
induction) is finding a strong enough induction hypothesis. To this
end, we begin by defining, for each type T, a set R_T of closed
terms of type T. We will specify these sets using a relation R
and write R T t when t is in R_T. (The sets R_T are sometimes
called saturated sets or reducibility candidates.)
Here is the definition of R for the base language:
This definition gives us the strengthened induction hypothesis that we
need. Our primary goal is to show that all programs ---i.e., all
closed terms of base type---halt. But closed terms of base type can
contain subterms of functional type, so we need to know something
about these as well. Moreover, it is not enough to know that these
subterms halt, because the application of a normalized function to a
normalized argument involves a substitution, which may enable more
evaluation steps. So we need a stronger condition for terms of
functional type: not only should they halt themselves, but, when
applied to halting arguments, they should yield halting results.
The form of R is characteristic of the logical relations proof
technique. (Since we are just dealing with unary relations here, we
could perhaps more properly say logical predicates.) If we want to
prove some property P of all closed terms of type A, we proceed by
proving, by induction on types, that all terms of type A possess
property P, all terms of type A→A preserve property P, all
terms of type (A→A)->(A→A) preserve the property of preserving
property P, and so on. We do this by defining a family of
predicates, indexed by types. For the base type A, the predicate is
just P. For functional types, it says that the function should map
values satisfying the predicate at the input type to values satisfying
the predicate at the output type.
When we come to formalize the definition of R in Coq, we hit a
problem. The most obvious formulation would be as a parameterized
Inductive proposition like this:
Inductive R : ty -> tm -> Prop :=
| R_bool : forall b t, has_type empty t TBool ->
halts t ->
R TBool t
| R_arrow : forall T1 T2 t, has_type empty t (TArrow T1 T2) ->
halts t ->
(forall s, R T1 s -> R T2 (tapp t s)) ->
R (TArrow T1 T2) t.
Unfortunately, Coq rejects this definition because it violates the
strict positivity requirement for inductive definitions, which says
that the type being defined must not occur to the left of an arrow in
the type of a constructor argument. Here, it is the third argument to
R_arrow, namely (∀ s, R T1 s → R TS (tapp t s)), and
specifically the R T1 s part, that violates this rule. (The
outermost arrows separating the constructor arguments don't count when
applying this rule; otherwise we could never have genuinely inductive
predicates at all!) The reason for the rule is that types defined
with non-positive recursion can be used to build non-terminating
functions, which as we know would be a disaster for Coq's logical
soundness. Even though the relation we want in this case might be
perfectly innocent, Coq still rejects it because it fails the
positivity test.
Fortunately, it turns out that we can define R using a
Fixpoint:
- R bool t iff t is a closed term of type bool and t halts in a value
- R (T1 → T2) t iff t is a closed term of type T1 → T2 and t halts in a value and for any term s such that R T1 s, we have R T2 (t s).
Fixpoint R (T:ty) (t:tm) {struct T} : Prop :=
has_type empty t T ∧ halts t ∧
(match T with
| TBool ⇒ True
| TArrow T1 T2 ⇒ (∀ s, R T1 s → R T2 (tapp t s))
| TProd T1 T2 ⇒ False
end).
As immediate consequences of this definition, we have that every
element of every set R_T halts in a value and is closed with type
t :
Lemma R_halts : ∀ {T} {t}, R T t → halts t.
Proof.
intros. destruct T; unfold R in H; inversion H; inversion H1; assumption.
Qed.
Lemma R_typable_empty : ∀ {T} {t}, R T t → has_type empty t T.
Proof.
intros. destruct T; unfold R in H; inversion H; inversion H1; assumption.
Qed.
Now we proceed to show the main result, which is that every
well-typed term of type T is an element of R_T. Together with
R_halts, that will show that every well-typed term halts in a
value.
Membership in R_T is invariant under evaluation
Lemma step_preserves_halting : ∀ t t', (t ==> t') → (halts t ↔ halts t').
Proof.
intros t t' ST. unfold halts.
split.
Case "->".
intros [t'' [STM V]].
inversion STM; subst.
apply ex_falso_quodlibet. apply value__normal in V. unfold normal_form in V. apply V. ∃ t'. auto.
rewrite (step_deterministic _ _ _ ST H). ∃ t''. split; assumption.
Case "<-".
intros [t'0 [STM V]].
∃ t'0. split; eauto.
Qed.
Now the main lemma, which comes in two parts, one for each
direction. Each proceeds by induction on the structure of the type
T. In fact, this is where we make fundamental use of the
structure of types.
One requirement for staying in R_T is to stay in type T. In the
forward direction, we get this from ordinary type Preservation.
Lemma step_preserves_R : ∀ T t t', (t ==> t') → R T t → R T t'.
Proof.
induction T; intros t t' E Rt; unfold R; fold R; unfold R in Rt; fold R in Rt;
destruct Rt as [typable_empty_t [halts_t RRt]].
split. eapply preservation; eauto.
split. apply (step_preserves_halting _ _ E); eauto.
auto.
split. eapply preservation; eauto.
split. apply (step_preserves_halting _ _ E); eauto.
intros.
eapply IHT2.
apply ST_App1. apply E.
apply RRt; auto.
Admitted.
The generalization to multiple steps is trivial:
Lemma multistep_preserves_R : ∀ T t t',
(t ==>* t') → R T t → R T t'.
Proof.
intros T t t' STM; induction STM; intros.
assumption.
apply IHSTM. eapply step_preserves_R. apply H. assumption.
Qed.
In the reverse direction, we must add the fact that t has type
T before stepping as an additional hypothesis.
Lemma step_preserves_R' : ∀ T t t',
has_type empty t T → (t ==> t') → R T t' → R T t.
Proof.
Admitted.
Lemma multistep_preserves_R' : ∀ T t t',
has_type empty t T → (t ==>* t') → R T t' → R T t.
Proof.
intros T t t' HT STM.
induction STM; intros.
assumption.
eapply step_preserves_R'. assumption. apply H. apply IHSTM.
eapply preservation; eauto. auto.
Qed.
Closed instances of terms of type T belong to R_T
Multisubstitutions, multi-extensions, and instantiations
Definition env := list (id × tm).
Fixpoint msubst (ss:env) (t:tm) {struct ss} : tm :=
match ss with
| nil ⇒ t
| ((x,s)::ss') ⇒ msubst ss' ([x:=s]t)
end.
We need similar machinery to talk about repeated extension of a
typing context using a list of (identifier, type) pairs, which we
call a type assignment.
Definition tass := list (id × ty).
Fixpoint mextend (Gamma : context) (xts : tass) :=
match xts with
| nil ⇒ Gamma
| ((x,v)::xts') ⇒ extend (mextend Gamma xts') x v
end.
We will need some simple operations that work uniformly on
environments and type assigments
Fixpoint lookup {X:Set} (k : id) (l : list (id × X)) {struct l} : option X :=
match l with
| nil ⇒ None
| (j,x) :: l' ⇒
if eq_id_dec j k then Some x else lookup k l'
end.
Fixpoint drop {X:Set} (n:id) (nxs:list (id × X)) {struct nxs} : list (id × X) :=
match nxs with
| nil ⇒ nil
| ((n',x)::nxs') ⇒ if eq_id_dec n' n then drop n nxs' else (n',x)::(drop n nxs')
end.
An instantiation combines a type assignment and a value
environment with the same domains, where corresponding elements are
in R
Inductive instantiation : tass → env → Prop :=
| V_nil : instantiation nil nil
| V_cons : ∀ x T v c e, value v → R T v → instantiation c e → instantiation ((x,T)::c) ((x,v)::e).
We now proceed to prove various properties of these definitions.
Lemma vacuous_substitution : ∀ t x,
¬ appears_free_in x t →
∀ t', [x:=t']t = t.
Proof with eauto.
Admitted.
Lemma subst_closed: ∀ t,
closed t →
∀ x t', [x:=t']t = t.
Proof.
intros. apply vacuous_substitution. apply H. Qed.
Lemma subst_not_afi : ∀ t x v, closed v → ¬ appears_free_in x ([x:=v]t).
Proof with eauto. unfold closed, not.
t_cases (induction t) Case; intros x v P A; simpl in A.
Case "tvar".
destruct (eq_id_dec x i)...
inversion A; subst. auto.
Case "tapp".
inversion A; subst...
Case "tabs".
destruct (eq_id_dec x i)...
inversion A; subst...
inversion A; subst...
Case "tpair".
inversion A; subst...
Case "tfst".
inversion A; subst...
Case "tsnd".
inversion A; subst...
Case "ttrue".
inversion A.
Case "tfalse".
inversion A.
Case "tif".
inversion A; subst...
Qed.
Lemma duplicate_subst : ∀ t' x t v,
closed v → [x:=t]([x:=v]t') = [x:=v]t'.
Proof.
intros. eapply vacuous_substitution. apply subst_not_afi. auto.
Qed.
Lemma swap_subst : ∀ t x x1 v v1, x ≠ x1 → closed v → closed v1 →
[x1:=v1]([x:=v]t) = [x:=v]([x1:=v1]t).
Proof with eauto.
t_cases (induction t) Case; intros; simpl.
Case "tvar".
destruct (eq_id_dec x i); destruct (eq_id_dec x1 i).
subst. apply ex_falso_quodlibet...
subst. simpl. rewrite eq_id. apply subst_closed...
subst. simpl. rewrite eq_id. rewrite subst_closed...
simpl. rewrite neq_id... rewrite neq_id...
Admitted.
Lemma msubst_closed: ∀ t, closed t → ∀ ss, msubst ss t = t.
Proof.
induction ss.
reflexivity.
destruct a. simpl. rewrite subst_closed; assumption.
Qed.
Closed environments are those that contain only closed terms.
Fixpoint closed_env (env:env) {struct env} :=
match env with
| nil ⇒ True
| (x,t)::env' ⇒ closed t ∧ closed_env env'
end.
Next come a series of lemmas charcterizing how msubst of closed terms
distributes over subst and over each term form
Lemma subst_msubst: ∀ env x v t, closed v → closed_env env →
msubst env ([x:=v]t) = [x:=v](msubst (drop x env) t).
Proof.
induction env0; intros.
auto.
destruct a. simpl.
inversion H0. fold closed_env in H2.
destruct (eq_id_dec i x).
subst. rewrite duplicate_subst; auto.
simpl. rewrite swap_subst; eauto.
Qed.
Lemma msubst_var: ∀ ss x, closed_env ss →
msubst ss (tvar x) =
match lookup x ss with
| Some t ⇒ t
| None ⇒ tvar x
end.
Proof.
induction ss; intros.
reflexivity.
destruct a.
simpl. destruct (eq_id_dec i x).
apply msubst_closed. inversion H; auto.
apply IHss. inversion H; auto.
Qed.
Lemma msubst_abs: ∀ ss x T t,
msubst ss (tabs x T t) = tabs x T (msubst (drop x ss) t).
Proof.
induction ss; intros.
reflexivity.
destruct a.
simpl. destruct (eq_id_dec i x); simpl; auto.
Qed.
Lemma msubst_app : ∀ ss t1 t2, msubst ss (tapp t1 t2) = tapp (msubst ss t1) (msubst ss t2).
Proof.
induction ss; intros.
reflexivity.
destruct a.
simpl. rewrite <- IHss. auto.
Qed.
You'll need similar functions for the other term constructors.
Properties of multi-extensions
Lemma mextend_lookup : ∀ (c : tass) (x:id), lookup x c = (mextend empty c) x.
Proof.
induction c; intros.
auto.
destruct a. unfold lookup, mextend, extend. destruct (eq_id_dec i x); auto.
Qed.
Lemma mextend_drop : ∀ (c: tass) Gamma x x',
mextend Gamma (drop x c) x' = if eq_id_dec x x' then Gamma x' else mextend Gamma c x'.
induction c; intros.
destruct (eq_id_dec x x'); auto.
destruct a. simpl.
destruct (eq_id_dec i x).
subst. rewrite IHc.
destruct (eq_id_dec x x'). auto. unfold extend. rewrite neq_id; auto.
simpl. unfold extend. destruct (eq_id_dec i x').
subst.
destruct (eq_id_dec x x').
subst. exfalso. auto.
auto.
auto.
Qed.
Lemma instantiation_domains_match: ∀ {c} {e},
instantiation c e → ∀ {x} {T}, lookup x c = Some T → ∃ t, lookup x e = Some t.
Proof.
intros c e V. induction V; intros x0 T0 C.
solve by inversion .
simpl in ×.
destruct (eq_id_dec x x0); eauto.
Qed.
Lemma instantiation_env_closed : ∀ c e, instantiation c e → closed_env e.
Proof.
intros c e V; induction V; intros.
econstructor.
unfold closed_env. fold closed_env.
split. eapply typable_empty__closed. eapply R_typable_empty. eauto.
auto.
Qed.
Lemma instantiation_R : ∀ c e, instantiation c e →
∀ x t T, lookup x c = Some T →
lookup x e = Some t → R T t.
Proof.
intros c e V. induction V; intros x' t' T' G E.
solve by inversion.
unfold lookup in ×. destruct (eq_id_dec x x').
inversion G; inversion E; subst. auto.
eauto.
Qed.
Lemma instantiation_drop : ∀ c env,
instantiation c env → ∀ x, instantiation (drop x c) (drop x env).
Proof.
intros c e V. induction V.
intros. simpl. constructor.
intros. unfold drop. destruct (eq_id_dec x x0); auto. constructor; eauto.
Qed.
Lemma multistep_App2 : ∀ v t t',
value v → (t ==>* t') → (tapp v t) ==>* (tapp v t').
Proof.
intros v t t' V STM. induction STM.
apply multi_refl.
eapply multi_step.
apply ST_App2; eauto. auto.
Qed.
The R Lemma.
Lemma msubst_preserves_typing : ∀ c e,
instantiation c e →
∀ Gamma t S, has_type (mextend Gamma c) t S →
has_type Gamma (msubst e t) S.
Proof.
induction 1; intros.
simpl in H. simpl. auto.
simpl in H2. simpl.
apply IHinstantiation.
eapply substitution_preserves_typing; eauto.
apply (R_typable_empty H0).
Qed.
And at long last, the main lemma.
Lemma msubst_R : ∀ c env t T,
has_type (mextend empty c) t T → instantiation c env → R T (msubst env t).
Proof.
intros c env0 t T HT V.
generalize dependent env0.
remember (mextend empty c) as Gamma.
assert (∀ x, Gamma x = lookup x c).
intros. rewrite HeqGamma. rewrite mextend_lookup. auto.
clear HeqGamma.
generalize dependent c.
has_type_cases (induction HT) Case; intros.
Case "T_Var".
rewrite H0 in H. destruct (instantiation_domains_match V H) as [t P].
eapply instantiation_R; eauto.
rewrite msubst_var. rewrite P. auto. eapply instantiation_env_closed; eauto.
Case "T_Abs".
rewrite msubst_abs.
assert (WT: has_type empty (tabs x T11 (msubst (drop x env0) t12)) (TArrow T11 T12)).
eapply T_Abs. eapply msubst_preserves_typing. eapply instantiation_drop; eauto.
eapply context_invariance. apply HT.
intros.
unfold extend. rewrite mextend_drop. destruct (eq_id_dec x x0). auto.
rewrite H.
clear - c n. induction c.
simpl. rewrite neq_id; auto.
simpl. destruct a. unfold extend. destruct (eq_id_dec i x0); auto.
unfold R. fold R. split.
auto.
split. apply value_halts. apply v_abs.
intros.
destruct (R_halts H0) as [v [P Q]].
pose proof (multistep_preserves_R _ _ _ P H0).
apply multistep_preserves_R' with (msubst ((x,v)::env0) t12).
eapply T_App. eauto.
apply R_typable_empty; auto.
eapply multi_trans. eapply multistep_App2; eauto.
eapply multi_R.
simpl. rewrite subst_msubst.
eapply ST_AppAbs; eauto.
eapply typable_empty__closed.
apply (R_typable_empty H1).
eapply instantiation_env_closed; eauto.
eapply (IHHT ((x,T11)::c)).
intros. unfold extend, lookup. destruct (eq_id_dec x x0); auto.
constructor; auto.
Case "T_App".
rewrite msubst_app.
destruct (IHHT1 c H env0 V) as [_ [_ P1]].
pose proof (IHHT2 c H env0 V) as P2. fold R in P1. auto.
Admitted.