Library LibTactics
This file contains a set of tactics that extends the set of builtin
tactics provided with the standard distribution of Coq. It intends
to overcome a number of limitations of the standard set of tactics,
and thereby to help user to write shorter and more robust scripts.
Hopefully, Coq tactics will be improved as time goes by, and this
file should ultimately be useless. In the meanwhile, serious Coq
users will probably find it very useful.
The present file contains the implementation and the detailed
documentation of those tactics. The SF reader need not read this
file; instead, he/she is encouraged to read the chapter named
UseTactics.v, which is gentle introduction to the most useful
tactics from the LibTactic library.
The main features offered are:
External credits:
- More convenient syntax for naming hypotheses, with tactics for introduction and inversion that take as input only the name of hypotheses of type Prop, rather than the name of all variables.
- Tactics providing true support for manipulating N-ary conjunctions, disjunctions and existentials, hidding the fact that the underlying implementation is based on binary predicates.
- Convenient support for automation: tactic followed with the symbol "~" or "*" will call automation on the generated subgoals. Symbol "~" stands for auto and "*" for intuition eauto. These bindings can be customized.
- Forward-chaining tactics are provided to instantiate lemmas either with variable or hypotheses or a mix of both.
- A more powerful implementation of apply is provided (it is based on refine and thus behaves better with respect to conversion).
- An improved inversion tactic which substitutes equalities on variables generated by the standard inversion mecanism. Moreover, it supports the elimination of dependently-typed equalities (requires axiom K, which is a weak form of Proof Irrelevance).
- Tactics for saving time when writing proofs, with tactics to asserts hypotheses or sub-goals, and improved tactics for clearing, renaming, and sorting hypotheses.
- thanks to Xavier Leroy for providing the idea of tactic forward,
- thanks to Georges Gonthier for the implementation trick in rapply,
Set Implicit Arguments.
N-ary Existentials
Notation "'exists' x1 ',' P" :=
(∃ x1, P)
(at level 200, x1 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 ',' P" :=
(∃ x1, ∃ x2, P)
(at level 200, x1 ident, x2 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, P)
(at level 200, x1 ident, x2 ident, x3 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 x5 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, ∃ x5, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident, x5 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 x5 x6 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, ∃ x5, ∃ x6, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident, x5 ident,
x6 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 x5 x6 x7 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, ∃ x5, ∃ x6,
∃ x7, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident, x5 ident,
x6 ident, x7 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 x5 x6 x7 x8 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, ∃ x5, ∃ x6,
∃ x7, ∃ x8, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident, x5 ident,
x6 ident, x7 ident, x8 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 x5 x6 x7 x8 x9 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, ∃ x5, ∃ x6,
∃ x7, ∃ x8, ∃ x9, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident, x5 ident,
x6 ident, x7 ident, x8 ident, x9 ident,
right associativity) : type_scope.
Notation "'exists' x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ',' P" :=
(∃ x1, ∃ x2, ∃ x3, ∃ x4, ∃ x5, ∃ x6,
∃ x7, ∃ x8, ∃ x9, ∃ x10, P)
(at level 200, x1 ident, x2 ident, x3 ident, x4 ident, x5 ident,
x6 ident, x7 ident, x8 ident, x9 ident, x10 ident,
right associativity) : type_scope.
Ltac idcont tt :=
idtac.
Untyped arguments for tactics
Optional arguments for tactics
Wildcard arguments for tactics
ltac_wilds is another constant that is typically used to
simulate a sequence of N wildcards, with N chosen
appropriately depending on the context. Notation is ___.
Inductive ltac_Wilds : Set :=
| ltac_wilds : ltac_Wilds.
Notation "'___'" := ltac_wilds : ltac_scope.
Open Scope ltac_scope.
Position markers
gen_until_mark repeats generalize on hypotheses from the
context, starting from the bottom and stopping as soon as reaching
an hypothesis of type Mark. If fails if Mark does not
appear in the context.
Ltac gen_until_mark :=
match goal with H: ?T |- _ ⇒
match T with
| ltac_Mark ⇒ clear H
| _ ⇒ generalize H; clear H; gen_until_mark
end end.
intro_until_mark repeats intro until reaching an hypothesis of
type Mark. It throws away the hypothesis Mark.
It fails if Mark does not appear as an hypothesis in the
goal.
Ltac intro_until_mark :=
match goal with
| |- (ltac_Mark → _) ⇒ intros _
| _ ⇒ intro; intro_until_mark
end.
List of arguments for tactics
Require Import List.
Notation "'>>'" :=
(@nil Boxer)
(at level 0)
: ltac_scope.
Notation "'>>' v1" :=
((boxer v1)::nil)
(at level 0, v1 at level 0)
: ltac_scope.
Notation "'>>' v1 v2" :=
((boxer v1)::(boxer v2)::nil)
(at level 0, v1 at level 0, v2 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3" :=
((boxer v1)::(boxer v2)::(boxer v3)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7 v8" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::(boxer v8)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0,
v8 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7 v8 v9" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::(boxer v8)::(boxer v9)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0,
v8 at level 0, v9 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7 v8 v9 v10" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::(boxer v8)::(boxer v9)::(boxer v10)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0,
v8 at level 0, v9 at level 0, v10 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::(boxer v8)::(boxer v9)::(boxer v10)
::(boxer v11)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0,
v8 at level 0, v9 at level 0, v10 at level 0, v11 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::(boxer v8)::(boxer v9)::(boxer v10)
::(boxer v11)::(boxer v12)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0,
v8 at level 0, v9 at level 0, v10 at level 0, v11 at level 0,
v12 at level 0)
: ltac_scope.
Notation "'>>' v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13" :=
((boxer v1)::(boxer v2)::(boxer v3)::(boxer v4)::(boxer v5)
::(boxer v6)::(boxer v7)::(boxer v8)::(boxer v9)::(boxer v10)
::(boxer v11)::(boxer v12)::(boxer v13)::nil)
(at level 0, v1 at level 0, v2 at level 0, v3 at level 0,
v4 at level 0, v5 at level 0, v6 at level 0, v7 at level 0,
v8 at level 0, v9 at level 0, v10 at level 0, v11 at level 0,
v12 at level 0, v13 at level 0)
: ltac_scope.
The tactic list_boxer_of inputs a term E and returns a term
of type "list boxer", according to the following rules:
Ltac list_boxer_of E :=
match type of E with
| List.list Boxer ⇒ constr:(E)
| _ ⇒ constr:((boxer E)::nil)
end.
Databases of lemmas
Definition ltac_database (D:Boxer) (T:Boxer) (A:Boxer) := True.
Notation "'Register' D T" := (ltac_database (boxer D) (boxer T) _)
(at level 69, D at level 0, T at level 0).
Lemma ltac_database_provide : ∀ (A:Boxer) (D:Boxer) (T:Boxer),
ltac_database D T A.
Proof. split. Qed.
Ltac Provide T := apply (@ltac_database_provide (boxer T)).
Ltac ltac_database_get D T :=
let A := fresh "TEMP" in evar (A:Boxer);
let H := fresh "TEMP" in
assert (H : ltac_database (boxer D) (boxer T) A);
[ subst A; auto
| subst A; match type of H with ltac_database _ _ (boxer ?L) ⇒
generalize L end; clear H ].
On-the-fly removal of hypotheses
rm_term E removes one hypothesis that admits the same
type as E.
Ltac rm_term E :=
let T := type of E in
match goal with H: T |- _ ⇒ try clear H end.
Ltac rm_inside E :=
let go E := rm_inside E in
match E with
| rm ?X ⇒ rm_term X
| ?X1 ?X2 ⇒
go X1; go X2
| ?X1 ?X2 ?X3 ⇒
go X1; go X2; go X3
| ?X1 ?X2 ?X3 ?X4 ⇒
go X1; go X2; go X3; go X4
| ?X1 ?X2 ?X3 ?X4 ?X5 ⇒
go X1; go X2; go X3; go X4; go X5
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ⇒
go X1; go X2; go X3; go X4; go X5; go X6
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X7 ⇒
go X1; go X2; go X3; go X4; go X5; go X6; go X7
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X7 ?X8 ⇒
go X1; go X2; go X3; go X4; go X5; go X6; go X7; go X8
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X7 ?X8 ?X9 ⇒
go X1; go X2; go X3; go X4; go X5; go X6; go X7; go X8; go X9
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X7 ?X8 ?X9 ?X10 ⇒
go X1; go X2; go X3; go X4; go X5; go X6; go X7; go X8; go X9; go X10
| _ ⇒ idtac
end.
For faster performance, one may deactivate rm_inside by
replacing the body of this definition with idtac.
Ltac fast_rm_inside E :=
rm_inside E.
Numbers as arguments
Require BinPos Coq.ZArith.BinInt.
Definition ltac_nat_from_int (x:BinInt.Z) : nat :=
match x with
| BinInt.Z0 ⇒ 0%nat
| BinInt.Zpos p ⇒ BinPos.nat_of_P p
| BinInt.Zneg p ⇒ 0%nat
end.
Ltac nat_from_number N :=
match type of N with
| nat ⇒ constr:(N)
| BinInt.Z ⇒ let N' := constr:(ltac_nat_from_int N) in eval compute in N'
end.
ltac_pattern E at K is the same as pattern E at K except that
K is a Coq natural rather than a Ltac integer. Syntax
ltac_pattern E as K in H is also available.
Tactic Notation "ltac_pattern" constr(E) "at" constr(K) :=
match nat_from_number K with
| 1 ⇒ pattern E at 1
| 2 ⇒ pattern E at 2
| 3 ⇒ pattern E at 3
| 4 ⇒ pattern E at 4
| 5 ⇒ pattern E at 5
| 6 ⇒ pattern E at 6
| 7 ⇒ pattern E at 7
| 8 ⇒ pattern E at 8
end.
Tactic Notation "ltac_pattern" constr(E) "at" constr(K) "in" hyp(H) :=
match nat_from_number K with
| 1 ⇒ pattern E at 1 in H
| 2 ⇒ pattern E at 2 in H
| 3 ⇒ pattern E at 3 in H
| 4 ⇒ pattern E at 4 in H
| 5 ⇒ pattern E at 5 in H
| 6 ⇒ pattern E at 6 in H
| 7 ⇒ pattern E at 7 in H
| 8 ⇒ pattern E at 8 in H
end.
Tactic Notation "show" tactic(tac) :=
let R := tac in pose R.
dup N produces N copies of the current goal. It is useful
for building examples on which to illustrate behaviour of tactics.
dup is short for dup 2.
Lemma dup_lemma : ∀ P, P → P → P.
Proof. auto. Qed.
Ltac dup_tactic N :=
match nat_from_number N with
| 0 ⇒ idtac
| S 0 ⇒ idtac
| S ?N' ⇒ apply dup_lemma; [ | dup_tactic N' ]
end.
Tactic Notation "dup" constr(N) :=
dup_tactic N.
Tactic Notation "dup" :=
dup 2.
Ltac check_noevar M :=
match M with M ⇒ idtac end.
Ltac check_noevar_hyp H :=
let T := type of H in
match type of H with T ⇒ idtac end.
Ltac check_noevar_goal :=
match goal with |- ?G ⇒ match G with G ⇒ idtac end end.
Tagging of hypotheses
Ltac get_last_hyp tt :=
match goal with H: _ |- _ ⇒ constr:(H) end.
Tagging of hypotheses
ltac_to_generalize is a specific marker for hypotheses
to be generalized.
Definition ltac_to_generalize (A:Type) (x:A) := x.
Ltac gen_to_generalize :=
repeat match goal with
H: ltac_to_generalize _ |- _ ⇒ generalize H; clear H end.
Ltac mark_to_generalize H :=
let T := type of H in
change T with (ltac_to_generalize T) in H.
Deconstructing terms
Ltac get_head E :=
match E with
| ?P _ _ _ _ _ _ _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ _ ⇒ constr:(P)
| ?P _ _ _ ⇒ constr:(P)
| ?P _ _ ⇒ constr:(P)
| ?P _ ⇒ constr:(P)
| ?P ⇒ constr:(P)
end.
get_fun_arg E is a tactic that decomposes an application
term E, ie, when applied to a term of the form X1 ... XN
it returns a pair made of X1 .. X(N-1) and XN.
Ltac get_fun_arg E :=
match E with
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X7 ?X ⇒ constr:((X1 X2 X3 X4 X5 X6,X))
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X6 ?X ⇒ constr:((X1 X2 X3 X4 X5,X))
| ?X1 ?X2 ?X3 ?X4 ?X5 ?X ⇒ constr:((X1 X2 X3 X4,X))
| ?X1 ?X2 ?X3 ?X4 ?X ⇒ constr:((X1 X2 X3,X))
| ?X1 ?X2 ?X3 ?X ⇒ constr:((X1 X2,X))
| ?X1 ?X2 ?X ⇒ constr:((X1,X))
| ?X1 ?X ⇒ constr:((X1,X))
end.
Action at occurence and action not at occurence
Tactic Notation "ltac_action_at" constr(K) "of" constr(E) "do" tactic(Tac) :=
let p := fresh in ltac_pattern E at K;
match goal with |- ?P _ ⇒ set (p:=P) end;
Tac; unfold p; clear p.
Tactic Notation "ltac_action_at" constr(K) "of" constr(E) "in" hyp(H) "do" tactic(Tac) :=
let p := fresh in ltac_pattern E at K in H;
match type of H with ?P _ ⇒ set (p:=P) in H end;
Tac; unfold p in H; clear p.
protects E do Tac temporarily assigns a name to the expression E
so that the execution of tactic Tac will not modify E. This is
useful for instance to restrict the action of simpl.
Tactic Notation "protects" constr(E) "do" tactic(Tac) :=
let x := fresh "TEMP" in let H := fresh "TEMP" in
set (X := E) in *; assert (H : X = E) by reflexivity;
clearbody X; Tac; subst x.
Tactic Notation "protects" constr(E) "do" tactic(Tac) "/" :=
protects E do Tac.
An alias for eq
Definition eq' := @eq.
Hint Unfold eq'.
Notation "x '='' y" := (@eq' _ x y)
(at level 70, arguments at next level).
Application
Tactic Notation "rapply" constr(t) :=
first
[ eexact (@t)
| refine (@t)
| refine (@t _)
| refine (@t _ _)
| refine (@t _ _ _)
| refine (@t _ _ _ _)
| refine (@t _ _ _ _ _)
| refine (@t _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _ _ _ _ _ _)
| refine (@t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _)
].
The tactics applys_N T, where N is a natural number,
provides a more efficient way of using applys T. It avoids
trying out all possible arities, by specifying explicitely
the arity of function T.
Tactic Notation "rapply_0" constr(t) :=
refine (@t).
Tactic Notation "rapply_1" constr(t) :=
refine (@t _).
Tactic Notation "rapply_2" constr(t) :=
refine (@t _ _).
Tactic Notation "rapply_3" constr(t) :=
refine (@t _ _ _).
Tactic Notation "rapply_4" constr(t) :=
refine (@t _ _ _ _).
Tactic Notation "rapply_5" constr(t) :=
refine (@t _ _ _ _ _).
Tactic Notation "rapply_6" constr(t) :=
refine (@t _ _ _ _ _ _).
Tactic Notation "rapply_7" constr(t) :=
refine (@t _ _ _ _ _ _ _).
Tactic Notation "rapply_8" constr(t) :=
refine (@t _ _ _ _ _ _ _ _).
Tactic Notation "rapply_9" constr(t) :=
refine (@t _ _ _ _ _ _ _ _ _).
Tactic Notation "rapply_10" constr(t) :=
refine (@t _ _ _ _ _ _ _ _ _ _).
lets_base H E adds an hypothesis H : T to the context, where T is
the type of term E. If H is an introduction pattern, it will
destruct H according to the pattern.
Ltac lets_base I E := generalize E; intros I.
applys_to H E transform the type of hypothesis H by
replacing it by the result of the application of the term
E to H. Intuitively, it is equivalent to lets H: (E H).
Tactic Notation "applys_to" hyp(H) constr(E) :=
let H' := fresh in rename H into H';
(first [ lets_base H (E H')
| lets_base H (E _ H')
| lets_base H (E _ _ H')
| lets_base H (E _ _ _ H')
| lets_base H (E _ _ _ _ H')
| lets_base H (E _ _ _ _ _ H')
| lets_base H (E _ _ _ _ _ _ H')
| lets_base H (E _ _ _ _ _ _ _ H')
| lets_base H (E _ _ _ _ _ _ _ _ H')
| lets_base H (E _ _ _ _ _ _ _ _ _ H') ]
); clear H'.
constructors calls constructor or econstructor.
Assertions
false_post is the underlying tactic used to prove goals
of the form False. In the default implementation, it proves
the goal if the context contains False or an hypothesis of the
form C x1 .. xN = D y1 .. yM, or if the congruence tactic
finds a proof of x ≠ x for some x.
Ltac false_post :=
solve [ assumption | discriminate | congruence ].
Tactic Notation "false" :=
false_goal; try false_post.
tryfalse tries to solve a goal by contradiction, and leaves
the goal unchanged if it cannot solve it.
It is equivalent to try solve \[ false \].
Tactic Notation "tryfalse" :=
try solve [ false ].
tryfalse by tac / is that same as tryfalse except that
it tries to solve the goal using tactic tac if assumption
and discriminate do not apply.
It is equivalent to try solve \[ false; tac \].
Example: tryfalse by congruence/
Tactic Notation "tryfalse" "by" tactic(tac) "/" :=
try solve [ false; instantiate; tac ].
Tactic Notation "false" constr(T) "by" tactic(tac) "/" :=
false_goal; first
[ first [ apply T | eapply T | rapply T]; instantiate; tac
| let H := fresh in lets_base H T;
first [ discriminate H
| false; instantiate; tac ] ].
Tactic Notation "false" constr(T) :=
false T by idtac/.
false_invert proves any goal provided there is at least
one hypothesis H in the context that can be proved absurd
by calling inversion H.
Ltac false_invert_tactic :=
match goal with H:_ |- _ ⇒
solve [ inversion H
| clear H; false_invert_tactic
| fail 2 ] end.
Tactic Notation "false_invert" :=
false_invert_tactic.
tryfalse_invert tries to prove the goal using
false or false_invert, and leaves the goal
unchanged if it does not succeed.
Tactic Notation "tryfalse_invert" :=
try solve [ false | false_invert ].
asserts H: T is another syntax for assert (H : T), which
also works with introduction patterns. For instance, one can write:
asserts \[x P\] (∃ n, n = 3), or
asserts \[H|H\] (n = 0 ∨ n = 1).
Tactic Notation "asserts" simple_intropattern(I) ":" constr(T) :=
let H := fresh in assert (H : T);
[ | generalize H; clear H; intros I ].
Tactic Notation "asserts" simple_intropattern(I1)
simple_intropattern(I2) ":" constr(T) :=
asserts [I1 I2]: T.
Tactic Notation "asserts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) ":" constr(T) :=
asserts [I1 [I2 I3]]: T.
Tactic Notation "asserts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) ":" constr(T) :=
asserts [I1 [I2 [I3 I4]]]: T.
Tactic Notation "asserts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) simple_intropattern(I5) ":" constr(T) :=
asserts [I1 [I2 [I3 [I4 I5]]]]: T.
Tactic Notation "asserts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) ":" constr(T) :=
asserts [I1 [I2 [I3 [I4 [I5 I6]]]]]: T.
Tactic Notation "asserts" ":" constr(T) :=
let H := fresh in asserts H : T.
cuts H: T is the same as asserts H: T except that the two subgoals
generated are swapped: the subgoal T comes second. Note that contrary
to cut, it introduces the hypothesis.
Tactic Notation "cuts" simple_intropattern(I) ":" constr(T) :=
cut (T); [ intros I | idtac ].
Tactic Notation "cuts" ":" constr(T) :=
let H := fresh in cuts H: T.
Tactic Notation "cuts" simple_intropattern(I1)
simple_intropattern(I2) ":" constr(T) :=
cuts [I1 I2]: T.
Tactic Notation "cuts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) ":" constr(T) :=
cuts [I1 [I2 I3]]: T.
Tactic Notation "cuts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) ":" constr(T) :=
cuts [I1 [I2 [I3 I4]]]: T.
Tactic Notation "cuts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) simple_intropattern(I5) ":" constr(T) :=
cuts [I1 [I2 [I3 [I4 I5]]]]: T.
Tactic Notation "cuts" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) ":" constr(T) :=
cuts [I1 [I2 [I3 [I4 [I5 I6]]]]]: T.
Instantiation and forward-chaining
Ltac app_assert t P cont :=
let H := fresh "TEMP" in
assert (H : P); [ | cont(t H); clear H ].
Ltac app_evar t A cont :=
let x := fresh "TEMP" in
evar (x:A);
let t' := constr:(t x) in
let t'' := (eval unfold x in t') in
subst x; cont t''.
Ltac app_arg t P v cont :=
let H := fresh "TEMP" in
assert (H : P); [ apply v | cont(t H); try clear H ].
Ltac build_app_alls t final :=
let rec go t :=
match type of t with
| ?P → ?Q ⇒ app_assert t P go
| ∀ _:?A, _ ⇒ app_evar t A go
| _ ⇒ final t
end in
go t.
Ltac boxerlist_next_type vs :=
match vs with
| nil ⇒ constr:(ltac_wild)
| (boxer ltac_wild)::?vs' ⇒ boxerlist_next_type vs'
| (boxer ltac_wilds)::_ ⇒ constr:(ltac_wild)
| (@boxer ?T _)::_ ⇒ constr:(T)
end.
Ltac build_app_hnts t vs final :=
let rec go t vs :=
match vs with
| nil ⇒ first [ final t | fail 1 ]
| (boxer ltac_wilds)::_ ⇒ first [ build_app_alls t final | fail 1 ]
| (boxer ?v)::?vs' ⇒
let cont t' := go t' vs in
let cont' t' := go t' vs' in
let T := type of t in
let T := eval hnf in T in
match v with
| ltac_wild ⇒
first [ let U := boxerlist_next_type vs' in
match U with
| ltac_wild ⇒
match T with
| ?P → ?Q ⇒ first [ app_assert t P cont' | fail 3 ]
| ∀ _:?A, _ ⇒ first [ app_evar t A cont' | fail 3 ]
end
| _ ⇒
match T with
| U → ?Q ⇒ first [ app_assert t U cont' | fail 3 ]
| ∀ _:U, _ ⇒ first [ app_evar t U cont' | fail 3 ]
| ?P → ?Q ⇒ first [ app_assert t P cont | fail 3 ]
| ∀ _:?A, _ ⇒ first [ app_evar t A cont | fail 3 ]
end
end
| fail 2 ]
| _ ⇒
match T with
| ?P → ?Q ⇒ first [ app_arg t P v cont'
| app_assert t P cont
| fail 3 ]
| ∀ _:?A, _ ⇒ first [ cont' (t v)
| app_evar t A cont
| fail 3 ]
end
end
end in
go t vs.
Ltac build_app args final :=
first [
match args with (@boxer ?T ?t)::?vs ⇒
let t := constr:(t:T) in
build_app_hnts t vs final
end
| fail 1 "Instantiation fails for:" args].
Ltac unfold_head_until_product T :=
eval hnf in T.
Ltac args_unfold_head_if_not_product args :=
match args with (@boxer ?T ?t)::?vs ⇒
let T' := unfold_head_until_product T in
constr:((@boxer T' t)::vs)
end.
Ltac args_unfold_head_if_not_product_but_params args :=
match args with
| (boxer ?t)::(boxer ?v)::?vs ⇒
args_unfold_head_if_not_product args
| _ ⇒ constr:(args)
end.
lets H: (>> E0 E1 .. EN) will instantiate lemma E0
on the arguments Ei (which may be wildcards __),
and name H the resulting term. H may be an introduction
pattern, or a sequence of introduction patterns I1 I2 IN,
or empty.
Syntax lets H: E0 E1 .. EN is also available. If the last
argument EN is ___ (triple-underscore), then all
arguments of H will be instantiated.
Ltac lets_build I Ei :=
let args := list_boxer_of Ei in
let args := args_unfold_head_if_not_product_but_params args in
build_app args ltac:(fun R ⇒ lets_base I R).
Tactic Notation "lets" simple_intropattern(I) ":" constr(E) :=
lets_build I E; fast_rm_inside E.
Tactic Notation "lets" ":" constr(E) :=
let H := fresh in lets H: E.
Tactic Notation "lets" ":" constr(E0)
constr(A1) :=
lets: (>> E0 A1).
Tactic Notation "lets" ":" constr(E0)
constr(A1) constr(A2) :=
lets: (>> E0 A1 A2).
Tactic Notation "lets" ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets: (>> E0 A1 A2 A3).
Tactic Notation "lets" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets: (>> E0 A1 A2 A3 A4).
Tactic Notation "lets" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets: (>> E0 A1 A2 A3 A4 A5).
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2)
":" constr(E) :=
lets [I1 I2]: E.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) ":" constr(E) :=
lets [I1 [I2 I3]]: E.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) ":" constr(E) :=
lets [I1 [I2 [I3 I4]]]: E.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
":" constr(E) :=
lets [I1 [I2 [I3 [I4 I5]]]]: E.
Tactic Notation "lets" simple_intropattern(I) ":" constr(E0)
constr(A1) :=
lets I: (>> E0 A1).
Tactic Notation "lets" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) :=
lets I: (>> E0 A1 A2).
Tactic Notation "lets" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets I: (>> E0 A1 A2 A3).
Tactic Notation "lets" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets I: (>> E0 A1 A2 A3 A4).
Tactic Notation "lets" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets I: (>> E0 A1 A2 A3 A4 A5).
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2) ":" constr(E0)
constr(A1) :=
lets [I1 I2]: E0 A1.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2) ":" constr(E0)
constr(A1) constr(A2) :=
lets [I1 I2]: E0 A1 A2.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets [I1 I2]: E0 A1 A2 A3.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets [I1 I2]: E0 A1 A2 A3 A4.
Tactic Notation "lets" simple_intropattern(I1) simple_intropattern(I2) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets [I1 I2]: E0 A1 A2 A3 A4 A5.
forwards H: (>> E0 E1 .. EN) is short for
forwards H: (>> E0 E1 .. EN ___).
The arguments Ei can be wildcards __ (except E0).
H may be an introduction pattern, or a sequence of
introduction pattern, or empty.
Syntax forwards H: E0 E1 .. EN is also available.
Ltac forwards_build_app_arg Ei :=
let args := list_boxer_of Ei in
let args := (eval simpl in (args ++ ((boxer ___)::nil))) in
let args := args_unfold_head_if_not_product args in
args.
Ltac forwards_then Ei cont :=
let args := forwards_build_app_arg Ei in
let args := args_unfold_head_if_not_product_but_params args in
build_app args cont.
Tactic Notation "forwards" simple_intropattern(I) ":" constr(Ei) :=
let args := forwards_build_app_arg Ei in
lets I: args.
Tactic Notation "forwards" ":" constr(E) :=
let H := fresh in forwards H: E.
Tactic Notation "forwards" ":" constr(E0)
constr(A1) :=
forwards: (>> E0 A1).
Tactic Notation "forwards" ":" constr(E0)
constr(A1) constr(A2) :=
forwards: (>> E0 A1 A2).
Tactic Notation "forwards" ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
forwards: (>> E0 A1 A2 A3).
Tactic Notation "forwards" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
forwards: (>> E0 A1 A2 A3 A4).
Tactic Notation "forwards" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
forwards: (>> E0 A1 A2 A3 A4 A5).
Tactic Notation "forwards" simple_intropattern(I1) simple_intropattern(I2)
":" constr(E) :=
forwards [I1 I2]: E.
Tactic Notation "forwards" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) ":" constr(E) :=
forwards [I1 [I2 I3]]: E.
Tactic Notation "forwards" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) ":" constr(E) :=
forwards [I1 [I2 [I3 I4]]]: E.
Tactic Notation "forwards" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
":" constr(E) :=
forwards [I1 [I2 [I3 [I4 I5]]]]: E.
Tactic Notation "forwards" simple_intropattern(I) ":" constr(E0)
constr(A1) :=
forwards I: (>> E0 A1).
Tactic Notation "forwards" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) :=
forwards I: (>> E0 A1 A2).
Tactic Notation "forwards" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
forwards I: (>> E0 A1 A2 A3).
Tactic Notation "forwards" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
forwards I: (>> E0 A1 A2 A3 A4).
Tactic Notation "forwards" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
forwards I: (>> E0 A1 A2 A3 A4 A5).
Tactic Notation "forwards_nounfold" simple_intropattern(I) ":" constr(Ei) :=
let args := list_boxer_of Ei in
let args := (eval simpl in (args ++ ((boxer ___)::nil))) in
build_app args ltac:(fun R ⇒ lets_base I R);
fast_rm_inside Ei.
Ltac forwards_nounfold_then Ei cont :=
let args := list_boxer_of Ei in
let args := (eval simpl in (args ++ ((boxer ___)::nil))) in
build_app args cont;
fast_rm_inside Ei.
applys (>> E0 E1 .. EN) instantiates lemma E0
on the arguments Ei (which may be wildcards __),
and apply the resulting term to the current goal,
using the tactic applys defined earlier on.
applys E0 E1 E2 .. EN is also available.
Ltac applys_build Ei :=
let args := list_boxer_of Ei in
let args := args_unfold_head_if_not_product_but_params args in
build_app args ltac:(fun R ⇒
first [ apply R | eapply R | rapply R ]).
Ltac applys_base E :=
match type of E with
| list Boxer ⇒ applys_build E
| _ ⇒ first [ rapply E | applys_build E ]
end; fast_rm_inside E.
Tactic Notation "applys" constr(E) :=
applys_base E.
Tactic Notation "applys" constr(E0) constr(A1) :=
applys (>> E0 A1).
Tactic Notation "applys" constr(E0) constr(A1) constr(A2) :=
applys (>> E0 A1 A2).
Tactic Notation "applys" constr(E0) constr(A1) constr(A2) constr(A3) :=
applys (>> E0 A1 A2 A3).
Tactic Notation "applys" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) :=
applys (>> E0 A1 A2 A3 A4).
Tactic Notation "applys" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
applys (>> E0 A1 A2 A3 A4 A5).
fapplys (>> E0 E1 .. EN) instantiates lemma E0
on the arguments Ei and on the argument ___ meaning
that all evars should be explicitly instantiated,
and apply the resulting term to the current goal.
fapplys E0 E1 E2 .. EN is also available.
Ltac fapplys_build Ei :=
let args := list_boxer_of Ei in
let args := (eval simpl in (args ++ ((boxer ___)::nil))) in
let args := args_unfold_head_if_not_product_but_params args in
build_app args ltac:(fun R ⇒ apply R).
Tactic Notation "fapplys" constr(E0) :=
match type of E0 with
| list Boxer ⇒ fapplys_build E0
| _ ⇒ fapplys_build (>> E0)
end.
Tactic Notation "fapplys" constr(E0) constr(A1) :=
fapplys (>> E0 A1).
Tactic Notation "fapplys" constr(E0) constr(A1) constr(A2) :=
fapplys (>> E0 A1 A2).
Tactic Notation "fapplys" constr(E0) constr(A1) constr(A2) constr(A3) :=
fapplys (>> E0 A1 A2 A3).
Tactic Notation "fapplys" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) :=
fapplys (>> E0 A1 A2 A3 A4).
Tactic Notation "fapplys" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
fapplys (>> E0 A1 A2 A3 A4 A5).
specializes H (>> E1 E2 .. EN) will instantiate hypothesis H
on the arguments Ei (which may be wildcards __). If the last
argument EN is ___ (triple-underscore), then all arguments of
H get instantiated.
Ltac specializes_build H Ei :=
let H' := fresh "TEMP" in rename H into H';
let args := list_boxer_of Ei in
let args := constr:((boxer H')::args) in
let args := args_unfold_head_if_not_product args in
build_app args ltac:(fun R ⇒ lets H: R);
clear H'.
Ltac specializes_base H Ei :=
specializes_build H Ei; fast_rm_inside Ei.
Tactic Notation "specializes" hyp(H) :=
specializes_base H (___).
Tactic Notation "specializes" hyp(H) constr(A) :=
specializes_base H A.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) :=
specializes H (>> A1 A2).
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) :=
specializes H (>> A1 A2 A3).
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) constr(A4) :=
specializes H (>> A1 A2 A3 A4).
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
specializes H (>> A1 A2 A3 A4 A5).
Tactic Notation "fapply" constr(E) :=
let H := fresh in forwards H: E;
first [ apply H | eapply H | rapply H | hnf; apply H
| hnf; eapply H | applys H ].
sapply stands for "super apply". It tries
apply, eapply, applys and fapply,
and also tries to head-normalize the goal first.
Tactic Notation "sapply" constr(H) :=
first [ apply H | eapply H | rapply H | applys H
| hnf; apply H | hnf; eapply H | hnf; applys H
| fapply H ].
Adding assumptions
Tactic Notation "lets_simpl" ident(H) ":" constr(E) :=
lets H: E; simpl in H.
lets_hnf H: E is the same as lets H: E excepts that it
calls hnf to set the definition in head normal form.
Tactic Notation "lets_hnf" ident(H) ":" constr(E) :=
lets H: E; hnf in H.
Tactic Notation "lets_simpl" ":" constr(T) :=
let H := fresh in lets_simpl H: T.
Tactic Notation "lets_hnf" ":" constr(T) :=
let H := fresh in lets_hnf H: T.
Tactic Notation "put" ident(X) ":" constr(E) :=
pose (X := E).
Tactic Notation "put" ":" constr(E) :=
let X := fresh "X" in pose (X := E).
Application of tautologies
Ltac logic_base E cont :=
assert (H:E); [ cont tt | eapply H; clear H ].
Tactic Notation "logic" constr(E) :=
logic_base E ltac:(fun _ ⇒ tauto).
Application modulo equalities
Section equatesLemma.
Variables
(A0 A1 : Type)
(A2 : ∀ (x1 : A1), Type)
(A3 : ∀ (x1 : A1) (x2 : A2 x1), Type)
(A4 : ∀ (x1 : A1) (x2 : A2 x1) (x3 : A3 x2), Type)
(A5 : ∀ (x1 : A1) (x2 : A2 x1) (x3 : A3 x2) (x4 : A4 x3), Type)
(A6 : ∀ (x1 : A1) (x2 : A2 x1) (x3 : A3 x2) (x4 : A4 x3) (x5 : A5 x4), Type).
Lemma equates_0 : ∀ (P Q:Prop),
P → P = Q → Q.
Proof. intros. subst. auto. Qed.
Lemma equates_1 :
∀ (P:A0→Prop) x1 y1,
P y1 → x1 = y1 → P x1.
Proof. intros. subst. auto. Qed.
Lemma equates_2 :
∀ y1 (P:A0→∀(x1:A1),Prop) x1 x2,
P y1 x2 → x1 = y1 → P x1 x2.
Proof. intros. subst. auto. Qed.
Lemma equates_3 :
∀ y1 (P:A0→∀(x1:A1)(x2:A2 x1),Prop) x1 x2 x3,
P y1 x2 x3 → x1 = y1 → P x1 x2 x3.
Proof. intros. subst. auto. Qed.
Lemma equates_4 :
∀ y1 (P:A0→∀(x1:A1)(x2:A2 x1)(x3:A3 x2),Prop) x1 x2 x3 x4,
P y1 x2 x3 x4 → x1 = y1 → P x1 x2 x3 x4.
Proof. intros. subst. auto. Qed.
Lemma equates_5 :
∀ y1 (P:A0→∀(x1:A1)(x2:A2 x1)(x3:A3 x2)(x4:A4 x3),Prop) x1 x2 x3 x4 x5,
P y1 x2 x3 x4 x5 → x1 = y1 → P x1 x2 x3 x4 x5.
Proof. intros. subst. auto. Qed.
Lemma equates_6 :
∀ y1 (P:A0→∀(x1:A1)(x2:A2 x1)(x3:A3 x2)(x4:A4 x3)(x5:A5 x4),Prop)
x1 x2 x3 x4 x5 x6,
P y1 x2 x3 x4 x5 x6 → x1 = y1 → P x1 x2 x3 x4 x5 x6.
Proof. intros. subst. auto. Qed.
End equatesLemma.
Ltac equates_lemma n :=
match nat_from_number n with
| 0 ⇒ constr:(equates_0)
| 1 ⇒ constr:(equates_1)
| 2 ⇒ constr:(equates_2)
| 3 ⇒ constr:(equates_3)
| 4 ⇒ constr:(equates_4)
| 5 ⇒ constr:(equates_5)
| 6 ⇒ constr:(equates_6)
end.
Ltac equates_one n :=
let L := equates_lemma n in
eapply L.
Ltac equates_several E cont :=
let all_pos := match type of E with
| List.list Boxer ⇒ constr:(E)
| _ ⇒ constr:((boxer E)::nil)
end in
let rec go pos :=
match pos with
| nil ⇒ cont tt
| (boxer ?n)::?pos' ⇒ equates_one n; [ instantiate; go pos' | ]
end in
go all_pos.
Tactic Notation "equates" constr(E) :=
equates_several E ltac:(fun _ ⇒ idtac).
Tactic Notation "equates" constr(n1) constr(n2) :=
equates (>> n1 n2).
Tactic Notation "equates" constr(n1) constr(n2) constr(n3) :=
equates (>> n1 n2 n3).
Tactic Notation "equates" constr(n1) constr(n2) constr(n3) constr(n4) :=
equates (>> n1 n2 n3 n4).
Tactic Notation "applys_eq" constr(H) constr(E) :=
equates_several E ltac:(fun _ ⇒ sapply H).
Tactic Notation "applys_eq" constr(H) constr(n1) constr(n2) :=
applys_eq H (>> n1 n2).
Tactic Notation "applys_eq" constr(H) constr(n1) constr(n2) constr(n3) :=
applys_eq H (>> n1 n2 n3).
Tactic Notation "applys_eq" constr(H) constr(n1) constr(n2) constr(n3) constr(n4) :=
applys_eq H (>> n1 n2 n3 n4).
Introduction
- If introv is called on a goal of the form ∀ x, H, it should introduce all the variables quantified with a ∀ at the head of the goal, but it does not introduce hypotheses that preceed an arrow constructor, like in P → Q.
- If introv is called on a goal that is not of the form ∀ x, H nor P → Q, the tactic unfolds definitions until the goal takes the form ∀ x, H or P → Q. If unfolding definitions does not produces a goal of this form, then the tactic introv does nothing at all.
Ltac introv_rec :=
match goal with
| |- ?P → ?Q ⇒ idtac
| |- ∀ _, _ ⇒ intro; introv_rec
| |- _ ⇒ idtac
end.
Ltac introv_noarg :=
match goal with
| |- ?P → ?Q ⇒ idtac
| |- ∀ _, _ ⇒ introv_rec
| |- ?G ⇒ hnf;
match goal with
| |- ?P → ?Q ⇒ idtac
| |- ∀ _, _ ⇒ introv_rec
end
| |- _ ⇒ idtac
end.
Ltac introv_noarg_not_optimized :=
intro; match goal with H:_|-_ ⇒ revert H end; introv_rec.
Ltac introv_arg H :=
hnf; match goal with
| |- ?P → ?Q ⇒ intros H
| |- ∀ _, _ ⇒ intro; introv_arg H
end.
Tactic Notation "introv" :=
introv_noarg.
Tactic Notation "introv" simple_intropattern(I1) :=
introv_arg I1.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2) :=
introv I1; introv I2.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) :=
introv I1; introv I2 I3.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) :=
introv I1; introv I2 I3 I4.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5) :=
introv I1; introv I2 I3 I4 I5.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) :=
introv I1; introv I2 I3 I4 I5 I6.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) simple_intropattern(I7) :=
introv I1; introv I2 I3 I4 I5 I6 I7.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) simple_intropattern(I7) simple_intropattern(I8) :=
introv I1; introv I2 I3 I4 I5 I6 I7 I8.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) simple_intropattern(I7) simple_intropattern(I8)
simple_intropattern(I9) :=
introv I1; introv I2 I3 I4 I5 I6 I7 I8 I9.
Tactic Notation "introv" simple_intropattern(I1) simple_intropattern(I2)
simple_intropattern(I3) simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) simple_intropattern(I7) simple_intropattern(I8)
simple_intropattern(I9) simple_intropattern(I10) :=
introv I1; introv I2 I3 I4 I5 I6 I7 I8 I9 I10.
intros_all repeats intro as long as possible. Contrary to intros,
it unfolds any definition on the way. Remark that it also unfolds the
definition of negation, so applying introz to a goal of the form
∀ x, P x → ¬Q will introduce x and P x and Q, and will
leave False in the goal.
Tactic Notation "intros_all" :=
repeat intro.
intros_hnf introduces an hypothesis and sets in head normal form
Tactic Notation "intro_hnf" :=
intro; match goal with H: _ |- _ ⇒ hnf in H end.
Generalization
Tactic Notation "gen" ident(X1) :=
generalize dependent X1.
Tactic Notation "gen" ident(X1) ident(X2) :=
gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) :=
gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) :=
gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5) :=
gen X5; gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5)
ident(X6) :=
gen X6; gen X5; gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5)
ident(X6) ident(X7) :=
gen X7; gen X6; gen X5; gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5)
ident(X6) ident(X7) ident(X8) :=
gen X8; gen X7; gen X6; gen X5; gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5)
ident(X6) ident(X7) ident(X8) ident(X9) :=
gen X9; gen X8; gen X7; gen X6; gen X5; gen X4; gen X3; gen X2; gen X1.
Tactic Notation "gen" ident(X1) ident(X2) ident(X3) ident(X4) ident(X5)
ident(X6) ident(X7) ident(X8) ident(X9) ident(X10) :=
gen X10; gen X9; gen X8; gen X7; gen X6; gen X5; gen X4; gen X3; gen X2; gen X1.
generalizes X is a shorthand for calling generalize X; clear X.
It is weaker than tactic gen X since it does not support
dependencies. It is mainly intended for writing tactics.
Tactic Notation "generalizes" hyp(X) :=
generalize X; clear X.
Tactic Notation "generalizes" hyp(X1) hyp(X2) :=
generalizes X1; generalizes X2.
Tactic Notation "generalizes" hyp(X1) hyp(X2) hyp(X3) :=
generalizes X1 X2; generalizes X3.
Tactic Notation "generalizes" hyp(X1) hyp(X2) hyp(X3) hyp(X4) :=
generalizes X1 X2 X3; generalizes X4.
Naming
Tactic Notation "sets" ident(X) ":" constr(E) :=
set (X := E) in ×.
def_to_eq E X H applies when X := E is a local
definition. It adds an assumption H: X = E
and then clears the definition of X.
def_to_eq_sym is similar except that it generates
the equality H: E = X.
Ltac def_to_eq X HX E :=
assert (HX : X = E) by reflexivity; clearbody X.
Ltac def_to_eq_sym X HX E :=
assert (HX : E = X) by reflexivity; clearbody X.
set_eq X H: E generates the equality H: X = E,
for a fresh name X, and replaces E by X in the
current goal. Syntaxes set_eq X: E and
set_eq: E are also available. Similarly,
set_eq <- X H: E generates the equality H: E = X.
sets_eq X HX: E does the same but replaces E by X
everywhere in the goal. sets_eq X HX: E in H replaces in H.
set_eq X HX: E in |- performs no substitution at all.
Tactic Notation "set_eq" ident(X) ident(HX) ":" constr(E) :=
set (X := E); def_to_eq X HX E.
Tactic Notation "set_eq" ident(X) ":" constr(E) :=
let HX := fresh "EQ" X in set_eq X HX: E.
Tactic Notation "set_eq" ":" constr(E) :=
let X := fresh "X" in set_eq X: E.
Tactic Notation "set_eq" "<-" ident(X) ident(HX) ":" constr(E) :=
set (X := E); def_to_eq_sym X HX E.
Tactic Notation "set_eq" "<-" ident(X) ":" constr(E) :=
let HX := fresh "EQ" X in set_eq <- X HX: E.
Tactic Notation "set_eq" "<-" ":" constr(E) :=
let X := fresh "X" in set_eq <- X: E.
Tactic Notation "sets_eq" ident(X) ident(HX) ":" constr(E) :=
set (X := E) in *; def_to_eq X HX E.
Tactic Notation "sets_eq" ident(X) ":" constr(E) :=
let HX := fresh "EQ" X in sets_eq X HX: E.
Tactic Notation "sets_eq" ":" constr(E) :=
let X := fresh "X" in sets_eq X: E.
Tactic Notation "sets_eq" "<-" ident(X) ident(HX) ":" constr(E) :=
set (X := E) in *; def_to_eq_sym X HX E.
Tactic Notation "sets_eq" "<-" ident(X) ":" constr(E) :=
let HX := fresh "EQ" X in sets_eq <- X HX: E.
Tactic Notation "sets_eq" "<-" ":" constr(E) :=
let X := fresh "X" in sets_eq <- X: E.
Tactic Notation "set_eq" ident(X) ident(HX) ":" constr(E) "in" hyp(H) :=
set (X := E) in H; def_to_eq X HX E.
Tactic Notation "set_eq" ident(X) ":" constr(E) "in" hyp(H) :=
let HX := fresh "EQ" X in set_eq X HX: E in H.
Tactic Notation "set_eq" ":" constr(E) "in" hyp(H) :=
let X := fresh "X" in set_eq X: E in H.
Tactic Notation "set_eq" "<-" ident(X) ident(HX) ":" constr(E) "in" hyp(H) :=
set (X := E) in H; def_to_eq_sym X HX E.
Tactic Notation "set_eq" "<-" ident(X) ":" constr(E) "in" hyp(H) :=
let HX := fresh "EQ" X in set_eq <- X HX: E in H.
Tactic Notation "set_eq" "<-" ":" constr(E) "in" hyp(H) :=
let X := fresh "X" in set_eq <- X: E in H.
Tactic Notation "set_eq" ident(X) ident(HX) ":" constr(E) "in" "|-" :=
set (X := E) in |-; def_to_eq X HX E.
Tactic Notation "set_eq" ident(X) ":" constr(E) "in" "|-" :=
let HX := fresh "EQ" X in set_eq X HX: E in |-.
Tactic Notation "set_eq" ":" constr(E) "in" "|-" :=
let X := fresh "X" in set_eq X: E in |-.
Tactic Notation "set_eq" "<-" ident(X) ident(HX) ":" constr(E) "in" "|-" :=
set (X := E) in |-; def_to_eq_sym X HX E.
Tactic Notation "set_eq" "<-" ident(X) ":" constr(E) "in" "|-" :=
let HX := fresh "EQ" X in set_eq <- X HX: E in |-.
Tactic Notation "set_eq" "<-" ":" constr(E) "in" "|-" :=
let X := fresh "X" in set_eq <- X: E in |-.
gen_eq X: E is a tactic whose purpose is to introduce
equalities so as to work around the limitation of the induction
tactic which typically loses information. gen_eq E as X replaces
all occurences of term E with a fresh variable X and the equality
X = E as extra hypothesis to the current conclusion. In other words
a conclusion C will be turned into (X = E) → C.
gen_eq: E and gen_eq: E as X are also accepted.
Tactic Notation "gen_eq" ident(X) ":" constr(E) :=
let EQ := fresh in sets_eq X EQ: E; revert EQ.
Tactic Notation "gen_eq" ":" constr(E) :=
let X := fresh "X" in gen_eq X: E.
Tactic Notation "gen_eq" ":" constr(E) "as" ident(X) :=
gen_eq X: E.
Tactic Notation "gen_eq" ident(X1) ":" constr(E1) ","
ident(X2) ":" constr(E2) :=
gen_eq X2: E2; gen_eq X1: E1.
Tactic Notation "gen_eq" ident(X1) ":" constr(E1) ","
ident(X2) ":" constr(E2) "," ident(X3) ":" constr(E3) :=
gen_eq X3: E3; gen_eq X2: E2; gen_eq X1: E1.
sets_let X finds the first let-expression in the goal
and names its body X. sets_eq_let X is similar,
except that it generates an explicit equality.
Tactics sets_let X in H and sets_eq_let X in H
allow specifying a particular hypothesis (by default,
the first one that contains a let is considered).
Known limitation: it does not seem possible to support
naming of multiple let-in constructs inside a term, from ltac.
Ltac sets_let_base tac :=
match goal with
| |- context[let _ := ?E in _] ⇒ tac E; cbv zeta
| H: context[let _ := ?E in _] |- _ ⇒ tac E; cbv zeta in H
end.
Ltac sets_let_in_base H tac :=
match type of H with context[let _ := ?E in _] ⇒
tac E; cbv zeta in H end.
Tactic Notation "sets_let" ident(X) :=
sets_let_base ltac:(fun E ⇒ sets X: E).
Tactic Notation "sets_let" ident(X) "in" hyp(H) :=
sets_let_in_base H ltac:(fun E ⇒ sets X: E).
Tactic Notation "sets_eq_let" ident(X) :=
sets_let_base ltac:(fun E ⇒ sets_eq X: E).
Tactic Notation "sets_eq_let" ident(X) "in" hyp(H) :=
sets_let_in_base H ltac:(fun E ⇒ sets_eq X: E).
Rewriting
Tactic Notation "rewrite_all" constr(E) :=
repeat rewrite E.
Tactic Notation "rewrite_all" "<-" constr(E) :=
repeat rewrite <- E.
Tactic Notation "rewrite_all" constr(E) "in" ident(H) :=
repeat rewrite E in H.
Tactic Notation "rewrite_all" "<-" constr(E) "in" ident(H) :=
repeat rewrite <- E in H.
Tactic Notation "rewrite_all" constr(E) "in" "*" :=
repeat rewrite E in ×.
Tactic Notation "rewrite_all" "<-" constr(E) "in" "*" :=
repeat rewrite <- E in ×.
asserts_rewrite E asserts that an equality E holds (generating a
corresponding subgoal) and rewrite it straight away in the current
goal. It avoids giving a name to the equality and later clearing it.
Syntax for rewriting from right to left and/or into an hypothese
is similar to the one of rewrite. Note: the tactic replaces
plays a similar role.
Ltac asserts_rewrite_tactic E action :=
let EQ := fresh in (assert (EQ : E);
[ idtac | action EQ; clear EQ ]).
Tactic Notation "asserts_rewrite" constr(E) :=
asserts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite EQ).
Tactic Notation "asserts_rewrite" "<-" constr(E) :=
asserts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite <- EQ).
Tactic Notation "asserts_rewrite" constr(E) "in" hyp(H) :=
asserts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite EQ in H).
Tactic Notation "asserts_rewrite" "<-" constr(E) "in" hyp(H) :=
asserts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite <- EQ in H).
cuts_rewrite E is the same as asserts_rewrite E except
that subgoals are permuted.
Ltac cuts_rewrite_tactic E action :=
let EQ := fresh in (cuts EQ: E;
[ action EQ; clear EQ | idtac ]).
Tactic Notation "cuts_rewrite" constr(E) :=
cuts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite EQ).
Tactic Notation "cuts_rewrite" "<-" constr(E) :=
cuts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite <- EQ).
Tactic Notation "cuts_rewrite" constr(E) "in" hyp(H) :=
cuts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite EQ in H).
Tactic Notation "cuts_rewrite" "<-" constr(E) "in" hyp(H) :=
cuts_rewrite_tactic E ltac:(fun EQ ⇒ rewrite <- EQ in H).
Ltac rewrite_except H EQ :=
let K := fresh in let T := type of H in
set (K := T) in H;
rewrite EQ in *; unfold K in H; clear K.
rewrites E at K applies when E is of the form T1 = T2
rewrites the equality E at the K-th occurence of T1
in the current goal.
Syntaxes rewrites <- E at K and rewrites E at K in H
are also available.
Tactic Notation "rewrites" constr(E) "at" constr(K) :=
match type of E with ?T1 = ?T2 ⇒
ltac_action_at K of T1 do (rewrite E) end.
Tactic Notation "rewrites" "<-" constr(E) "at" constr(K) :=
match type of E with ?T1 = ?T2 ⇒
ltac_action_at K of T2 do (rewrite <- E) end.
Tactic Notation "rewrites" constr(E) "at" constr(K) "in" hyp(H) :=
match type of E with ?T1 = ?T2 ⇒
ltac_action_at K of T1 in H do (rewrite E in H) end.
Tactic Notation "rewrites" "<-" constr(E) "at" constr(K) "in" hyp(H) :=
match type of E with ?T1 = ?T2 ⇒
ltac_action_at K of T2 in H do (rewrite <- E in H) end.
Replace
Tactic Notation "replaces" constr(E) "with" constr(F) :=
let T := fresh in assert (T: E = F); [ | replace E with F; clear T ].
Tactic Notation "replaces" constr(E) "with" constr(F) "in" hyp(H) :=
let T := fresh in assert (T: E = F); [ | replace E with F in H; clear T ].
replaces E at K with F replaces the K-th occurence of E
with F in the current goal. Syntax replaces E at K with F in H
is also available.
Tactic Notation "replaces" constr(E) "at" constr(K) "with" constr(F) :=
let T := fresh in assert (T: E = F); [ | rewrites T at K; clear T ].
Tactic Notation "replaces" constr(E) "at" constr(K) "with" constr(F) "in" hyp(H) :=
let T := fresh in assert (T: E = F); [ | rewrites T at K in H; clear T ].
Renaming
Tactic Notation "renames" ident(X1) "to" ident(Y1) :=
rename X1 into Y1.
Tactic Notation "renames" ident(X1) "to" ident(Y1) ","
ident(X2) "to" ident(Y2) :=
renames X1 to Y1; renames X2 to Y2.
Tactic Notation "renames" ident(X1) "to" ident(Y1) ","
ident(X2) "to" ident(Y2) "," ident(X3) "to" ident(Y3) :=
renames X1 to Y1; renames X2 to Y2, X3 to Y3.
Tactic Notation "renames" ident(X1) "to" ident(Y1) ","
ident(X2) "to" ident(Y2) "," ident(X3) "to" ident(Y3) ","
ident(X4) "to" ident(Y4) :=
renames X1 to Y1; renames X2 to Y2, X3 to Y3, X4 to Y4.
Tactic Notation "renames" ident(X1) "to" ident(Y1) ","
ident(X2) "to" ident(Y2) "," ident(X3) "to" ident(Y3) ","
ident(X4) "to" ident(Y4) "," ident(X5) "to" ident(Y5) :=
renames X1 to Y1; renames X2 to Y2, X3 to Y3, X4 to Y4, X5 to Y5.
Tactic Notation "renames" ident(X1) "to" ident(Y1) ","
ident(X2) "to" ident(Y2) "," ident(X3) "to" ident(Y3) ","
ident(X4) "to" ident(Y4) "," ident(X5) "to" ident(Y5) ","
ident(X6) "to" ident(Y6) :=
renames X1 to Y1; renames X2 to Y2, X3 to Y3, X4 to Y4, X5 to Y5, X6 to Y6.
Unfolding
Ltac apply_to_head_of E cont :=
let go E :=
let P := get_head E in cont P in
match E with
| ∀ _,_ ⇒ intros; apply_to_head_of E cont
| ?A = ?B ⇒ first [ go A | go B ]
| ?A ⇒ go A
end.
Ltac unfolds_base :=
match goal with |- ?G ⇒
apply_to_head_of G ltac:(fun P ⇒ unfold P) end.
Tactic Notation "unfolds" :=
unfolds_base.
unfolds in H unfolds the head definition of hypothesis H, i.e. if
H has type P x1 ... xN then it calls unfold P in H.
Ltac unfolds_in_base H :=
match type of H with ?G ⇒
apply_to_head_of G ltac:(fun P ⇒ unfold P in H) end.
Tactic Notation "unfolds" "in" hyp(H) :=
unfolds_in_base H.
Tactic Notation "unfolds" reference(F1) :=
unfold F1 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2) :=
unfold F1,F2 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2)
"," reference(F3) :=
unfold F1,F2,F3 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2)
"," reference(F3) "," reference(F4) :=
unfold F1,F2,F3,F4 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2)
"," reference(F3) "," reference(F4) "," reference(F5) :=
unfold F1,F2,F3,F4,F5 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2)
"," reference(F3) "," reference(F4) "," reference(F5) "," reference(F6) :=
unfold F1,F2,F3,F4,F5,F6 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2)
"," reference(F3) "," reference(F4) "," reference(F5)
"," reference(F6) "," reference(F7) :=
unfold F1,F2,F3,F4,F5,F6,F7 in ×.
Tactic Notation "unfolds" reference(F1) "," reference(F2)
"," reference(F3) "," reference(F4) "," reference(F5)
"," reference(F6) "," reference(F7) "," reference(F8) :=
unfold F1,F2,F3,F4,F5,F6,F7,F8 in ×.
Tactic Notation "folds" constr(H) :=
fold H in ×.
Tactic Notation "folds" constr(H1) "," constr(H2) :=
folds H1; folds H2.
Tactic Notation "folds" constr(H1) "," constr(H2) "," constr(H3) :=
folds H1; folds H2; folds H3.
Tactic Notation "folds" constr(H1) "," constr(H2) "," constr(H3)
"," constr(H4) :=
folds H1; folds H2; folds H3; folds H4.
Tactic Notation "folds" constr(H1) "," constr(H2) "," constr(H3)
"," constr(H4) "," constr(H5) :=
folds H1; folds H2; folds H3; folds H4; folds H5.
Tactic Notation "simpls" :=
simpl in ×.
Tactic Notation "simpls" reference(F1) :=
simpl F1 in ×.
Tactic Notation "simpls" reference(F1) "," reference(F2) :=
simpls F1; simpls F2.
Tactic Notation "simpls" reference(F1) "," reference(F2)
"," reference(F3) :=
simpls F1; simpls F2; simpls F3.
Tactic Notation "simpls" reference(F1) "," reference(F2)
"," reference(F3) "," reference(F4) :=
simpls F1; simpls F2; simpls F3; simpls F4.
unsimpl E replaces all occurence of X by E, where X is
the result which the tactic simpl would give when applied to E.
It is useful to undo what simpl has simplified too far.
Tactic Notation "unsimpl" constr(E) :=
let F := (eval simpl in E) in change F with E.
Tactic Notation "unsimpl" constr(E) "in" hyp(H) :=
let F := (eval simpl in E) in change F with E in H.
unsimpl E in × applies unsimpl E everywhere possible.
unsimpls E is a synonymous.
Tactic Notation "unsimpl" constr(E) "in" "*" :=
let F := (eval simpl in E) in change F with E in ×.
Tactic Notation "unsimpls" constr(E) :=
unsimpl E in ×.
nosimpl t protects the Coq termt against some forms of
simplification. See Gonthier's work for details on this trick.
Tactic Notation "hnfs" := hnf in ×.
Substitution
Tactic Notation "substs" :=
repeat (match goal with H: ?x = ?y |- _ ⇒
first [ subst x | subst y ] end).
Implementation of substs below, which allows to call
subst on all the hypotheses that lie beyond a given
position in the proof context.
Ltac substs_below limit :=
match goal with H: ?T |- _ ⇒
match T with
| limit ⇒ idtac
| ?x = ?y ⇒
first [ subst x; substs_below limit
| subst y; substs_below limit
| generalizes H; substs_below limit; intro ]
end end.
substs below body E applies subst on all equalities that appear
in the context below the first hypothesis whose body is E.
If there is no such hypothesis in the context, it is equivalent
to subst. For instance, if H is an hypothesis, then
substs below H will substitute equalities below hypothesis H.
Tactic Notation "substs" "below" "body" constr(M) :=
substs_below M.
substs below H applies subst on all equalities that appear
in the context below the hypothesis named H. Note that
the current implementation is technically incorrect since it
will confuse different hypotheses with the same body.
Tactic Notation "substs" "below" hyp(H) :=
match type of H with ?M ⇒ substs below body M end.
Ltac subst_hyp_base H :=
match type of H with
| ?x = ?y ⇒ first [ subst x | subst y ]
end.
Tactic Notation "subst_hyp" hyp(H) := subst_hyp_base H.
intro_subst is a shorthand for intro H; subst_hyp H:
it introduces and substitutes the equality at the head
of the current goal.
Tactic Notation "intro_subst" :=
let H := fresh "TEMP" in intros H; subst_hyp H.
subst_local substitutes all local definition from the context
Ltac subst_local :=
repeat match goal with H:=_ |- _ ⇒ subst H end.
Ltac subst_eq_base E :=
let H := fresh "TEMP" in lets H: E; subst_hyp H.
Tactic Notation "subst_eq" constr(E) :=
subst_eq_base E.
pi_rewrite E replaces E of type Prop with a fresh
unification variable, and is thus a practical way to
exploit proof irrelevance, without writing explicitly
rewrite (proof_irrelevance E E'). Particularly useful
when E' is a big expression.
Ltac pi_rewrite_base E rewrite_tac :=
let E' := fresh in let T := type of E in evar (E':T);
rewrite_tac (@proof_irrelevance _ E E'); subst E'.
Tactic Notation "pi_rewrite" constr(E) :=
pi_rewrite_base E ltac:(fun X ⇒ rewrite X).
Tactic Notation "pi_rewrite" constr(E) "in" hyp(H) :=
pi_rewrite_base E ltac:(fun X ⇒ rewrite X in H).
Proving equalities
Ltac fequal_base :=
let go := f_equal; [ fequal_base | ] in
match goal with
| |- (_,_,_) = (_,_,_) ⇒ go
| |- (_,_,_,_) = (_,_,_,_) ⇒ go
| |- (_,_,_,_,_) = (_,_,_,_,_) ⇒ go
| |- (_,_,_,_,_,_) = (_,_,_,_,_,_) ⇒ go
| |- _ ⇒ f_equal
end.
Tactic Notation "fequal" :=
fequal_base.
fequals is the same as fequal except that it tries and solve
all trivial subgoals, using reflexivity and congruence
(as well as the proof-irrelevance principle).
fequals applies to goals of the form f x1 .. xN = f y1 .. yN
and produces some subgoals of the form xi = yi).
Ltac fequal_post :=
first [ reflexivity | congruence | apply proof_irrelevance | idtac ].
Tactic Notation "fequals" :=
fequal; fequal_post.
fequals_rec calls fequals recursively.
It is equivalent to repeat (progress fequals).
Tactic Notation "fequals_rec" :=
repeat (progress fequals).
Basic inversion
invert keep H as X1 .. XN is the same as inversion H as ... except
that only hypotheses which are not variable need to be named
explicitely, in a similar fashion as introv is used to name
only hypotheses.
Tactic Notation "invert" "keep" hyp(H) "as" simple_intropattern(I1) :=
invert keep H; introv I1.
Tactic Notation "invert" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) :=
invert keep H; introv I1 I2.
Tactic Notation "invert" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) :=
invert keep H; introv I1 I2 I3.
invert H is same to inversion H except that it puts all the
facts obtained in the goal and clears hypothesis H.
In other words, it is equivalent to invert keep H; clear H.
Tactic Notation "invert" hyp(H) :=
invert keep H; clear H.
Tactic Notation "invert_tactic" hyp(H) tactic(tac) :=
let H' := fresh in rename H into H'; tac H'; clear H'.
Tactic Notation "invert" hyp(H) "as" simple_intropattern(I1) :=
invert_tactic H (fun H ⇒ invert keep H as I1).
Tactic Notation "invert" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) :=
invert_tactic H (fun H ⇒ invert keep H as I1 I2).
Tactic Notation "invert" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) :=
invert_tactic H (fun H ⇒ invert keep H as I1 I2 I3).
Inversion with substitution
Axiom inj_pair2 : ∀ (U : Type) (P : U → Type) (p : U) (x y : P p),
existT P p x = existT P p y → x = y.
Ltac inverts_tactic H i1 i2 i3 i4 i5 i6 :=
let rec go i1 i2 i3 i4 i5 i6 :=
match goal with
| |- (ltac_Mark → _) ⇒ intros _
| |- (?x = ?y → _) ⇒ let H := fresh in intro H;
first [ subst x | subst y ];
go i1 i2 i3 i4 i5 i6
| |- (existT ?P ?p ?x = existT ?P ?p ?y → _) ⇒
let H := fresh in intro H;
generalize (@inj_pair2 _ P p x y H);
clear H; go i1 i2 i3 i4 i5 i6
| |- (?P → ?Q) ⇒ i1; go i2 i3 i4 i5 i6 ltac:(intro)
| |- (∀ _, _) ⇒ intro; go i1 i2 i3 i4 i5 i6
end in
generalize ltac_mark; invert keep H; go i1 i2 i3 i4 i5 i6;
unfold eq' in ×.
inverts keep H is same to invert keep H except that it
applies subst to all the equalities generated by the inversion.
Tactic Notation "inverts" "keep" hyp(H) :=
inverts_tactic H ltac:(intro) ltac:(intro) ltac:(intro)
ltac:(intro) ltac:(intro) ltac:(intro).
inverts keep H as X1 .. XN is the same as
invert keep H as X1 .. XN except that it applies subst to all the
equalities generated by the inversion
Tactic Notation "inverts" "keep" hyp(H) "as" simple_intropattern(I1) :=
inverts_tactic H ltac:(intros I1)
ltac:(intro) ltac:(intro) ltac:(intro) ltac:(intro) ltac:(intro).
Tactic Notation "inverts" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) :=
inverts_tactic H ltac:(intros I1) ltac:(intros I2)
ltac:(intro) ltac:(intro) ltac:(intro) ltac:(intro).
Tactic Notation "inverts" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) :=
inverts_tactic H ltac:(intros I1) ltac:(intros I2) ltac:(intros I3)
ltac:(intro) ltac:(intro) ltac:(intro).
Tactic Notation "inverts" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4) :=
inverts_tactic H ltac:(intros I1) ltac:(intros I2) ltac:(intros I3)
ltac:(intros I4) ltac:(intro) ltac:(intro).
Tactic Notation "inverts" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4)
simple_intropattern(I5) :=
inverts_tactic H ltac:(intros I1) ltac:(intros I2) ltac:(intros I3)
ltac:(intros I4) ltac:(intros I5) ltac:(intro).
Tactic Notation "inverts" "keep" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4)
simple_intropattern(I5) simple_intropattern(I6) :=
inverts_tactic H ltac:(intros I1) ltac:(intros I2) ltac:(intros I3)
ltac:(intros I4) ltac:(intros I5) ltac:(intros I6).
Tactic Notation "inverts" hyp(H) :=
inverts keep H; clear H.
inverts H as X1 .. XN is the same as inverts keep H as X1 .. XN
but it also clears the hypothesis H.
Tactic Notation "inverts_tactic" hyp(H) tactic(tac) :=
let H' := fresh in rename H into H'; tac H'; clear H'.
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1) :=
invert_tactic H (fun H ⇒ inverts keep H as I1).
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) :=
invert_tactic H (fun H ⇒ inverts keep H as I1 I2).
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) :=
invert_tactic H (fun H ⇒ inverts keep H as I1 I2 I3).
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4) :=
invert_tactic H (fun H ⇒ inverts keep H as I1 I2 I3 I4).
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4)
simple_intropattern(I5) :=
invert_tactic H (fun H ⇒ inverts keep H as I1 I2 I3 I4 I5).
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4)
simple_intropattern(I5) simple_intropattern(I6) :=
invert_tactic H (fun H ⇒ inverts keep H as I1 I2 I3 I4 I5 I6).
inverts H as performs an inversion on hypothesis H, substitutes
generated equalities, and put in the goal the other freshly-created
hypotheses, for the user to name explicitly.
inverts keep H as is the same except that it does not clear H.
TODO: reimplement inverts above using this one
Ltac inverts_as_tactic H :=
let rec go tt :=
match goal with
| |- (ltac_Mark → _) ⇒ intros _
| |- (?x = ?y → _) ⇒ let H := fresh "TEMP" in intro H;
first [ subst x | subst y ];
go tt
| |- (existT ?P ?p ?x = existT ?P ?p ?y → _) ⇒
let H := fresh in intro H;
generalize (@inj_pair2 _ P p x y H);
clear H; go tt
| |- (∀ _, _) ⇒
intro; let H := get_last_hyp tt in mark_to_generalize H; go tt
end in
pose ltac_mark; inversion H;
generalize ltac_mark; gen_until_mark;
go tt; gen_to_generalize; unfolds ltac_to_generalize;
unfold eq' in ×.
Tactic Notation "inverts" "keep" hyp(H) "as" :=
inverts_as_tactic H.
Tactic Notation "inverts" hyp(H) "as" :=
inverts_as_tactic H; clear H.
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4)
simple_intropattern(I5) simple_intropattern(I6) simple_intropattern(I7) :=
inverts H as; introv I1 I2 I3 I4 I5 I6 I7.
Tactic Notation "inverts" hyp(H) "as" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) simple_intropattern(I4)
simple_intropattern(I5) simple_intropattern(I6) simple_intropattern(I7)
simple_intropattern(I8) :=
inverts H as; introv I1 I2 I3 I4 I5 I6 I7 I8.
Ltac injects_tactic H :=
let rec go _ :=
match goal with
| |- (ltac_Mark → _) ⇒ intros _
| |- (?x = ?y → _) ⇒ let H := fresh in intro H;
first [ subst x | subst y | idtac ];
go tt
end in
generalize ltac_mark; injection H; go tt.
injects keep H takes an hypothesis H of the form
C a1 .. aN = C b1 .. bN and substitute all equalities
ai = bi that have been generated.
Tactic Notation "injects" "keep" hyp(H) :=
injects_tactic H.
Tactic Notation "injects" hyp(H) :=
injects_tactic H; clear H.
Tactic Notation "inject" hyp(H) :=
injection H.
Tactic Notation "inject" hyp(H) "as" ident(X1) :=
injection H; intros X1.
Tactic Notation "inject" hyp(H) "as" ident(X1) ident(X2) :=
injection H; intros X1 X2.
Tactic Notation "inject" hyp(H) "as" ident(X1) ident(X2) ident(X3) :=
injection H; intros X1 X2 X3.
Tactic Notation "inject" hyp(H) "as" ident(X1) ident(X2) ident(X3)
ident(X4) :=
injection H; intros X1 X2 X3 X4.
Tactic Notation "inject" hyp(H) "as" ident(X1) ident(X2) ident(X3)
ident(X4) ident(X5) :=
injection H; intros X1 X2 X3 X4 X5.
Inversion and injection with substitution --rough implementation
Tactic Notation "inversions" "keep" hyp(H) :=
inversion H; subst.
inversions H is a shortcut for inversion H followed by subst
and clear H.
It is a rough implementation of inverts keep H which behave
badly when the proof context already contains equalities.
It is provided in case the better implementation turns out to be
too slow.
Tactic Notation "inversions" hyp(H) :=
inversion H; subst; clear H.
injections keep H is the same as injection H followed
by intros and subst. It is a rough implementation of
injects keep H which behave
badly when the proof context already contains equalities,
or when the goal starts with a forall or an implication.
Tactic Notation "injections" "keep" hyp(H) :=
injection H; intros; subst.
injections H is the same as injection H followed
by intros and clear H and subst. It is a rough
implementation of injects keep H which behave
badly when the proof context already contains equalities,
or when the goal starts with a forall or an implication.
Tactic Notation "injections" "keep" hyp(H) :=
injection H; clear H; intros; subst.
Case analysis
Tactic Notation "cases" constr(E) "as" ident(H) :=
let X := fresh "TEMP" in
set (X := E) in *; def_to_eq_sym X H E;
destruct X.
Tactic Notation "cases" constr(E) :=
let x := fresh "Eq" in cases E as H.
case_if_post is to be defined later as a tactic to clean
up goals.
Ltac case_if_post := idtac.
case_if looks for a pattern of the form if ?B then ?E1 else ?E2
in the goal, and perform a case analysis on B by calling
destruct B. It looks in the goal first, and otherwise in the
first hypothesis that contains and if statement.
case_if in H can be used to specify which hypothesis to consider.
Syntaxes case_if as Eq and case_if in H as Eq allows to name
the hypothesis coming from the case analysis.
Ltac case_if_on_tactic E Eq :=
match type of E with
| {_}+{_} ⇒ destruct E as [Eq | Eq]
| _ ⇒ let X := fresh in
sets_eq <- X Eq: E;
destruct X
end; case_if_post.
Tactic Notation "case_if_on" constr(E) "as" simple_intropattern(Eq) :=
case_if_on_tactic E Eq.
Tactic Notation "case_if" "as" simple_intropattern(Eq) :=
match goal with
| |- context [if ?B then _ else _] ⇒ case_if_on B as Eq
| K: context [if ?B then _ else _] |- _ ⇒ case_if_on B as Eq
end.
Tactic Notation "case_if" "in" hyp(H) "as" simple_intropattern(Eq) :=
match type of H with context [if ?B then _ else _] ⇒
case_if_on B as Eq end.
Tactic Notation "case_if" :=
let Eq := fresh in case_if as Eq.
Tactic Notation "case_if" "in" hyp(H) :=
let Eq := fresh in case_if in H as Eq.
cases_if is similar to case_if with two main differences:
if it creates an equality of the form x = y or x == y,
it substitutes it in the goal
Ltac cases_if_on_tactic E Eq :=
match type of E with
| {_}+{_} ⇒ destruct E as [Eq|Eq]; try subst_hyp Eq
| _ ⇒ let X := fresh in
sets_eq <- X Eq: E;
destruct X
end; case_if_post.
Tactic Notation "cases_if_on" constr(E) "as" simple_intropattern(Eq) :=
cases_if_on_tactic E Eq.
Tactic Notation "cases_if" "as" simple_intropattern(Eq) :=
match goal with
| |- context [if ?B then _ else _] ⇒ case_if_on B as Eq
| K: context [if ?B then _ else _] |- _ ⇒ case_if_on B as Eq
end.
Tactic Notation "cases_if" "in" hyp(H) "as" simple_intropattern(Eq) :=
match type of H with context [if ?B then _ else _] ⇒
cases_if_on B as Eq end.
Tactic Notation "cases_if" :=
let Eq := fresh in cases_if as Eq.
Tactic Notation "cases_if" "in" hyp(H) :=
let Eq := fresh in cases_if in H as Eq.
destruct_if looks for a pattern of the form if ?B then ?E1 else ?E2
in the goal, and perform a case analysis on B by calling
destruct B. It looks in the goal first, and otherwise in the
first hypothesis that contains and if statement.
Ltac destruct_if_post := tryfalse.
Tactic Notation "destruct_if"
"as" simple_intropattern(Eq1) simple_intropattern(Eq2) :=
match goal with
| |- context [if ?B then _ else _] ⇒ destruct B as [Eq1|Eq2]
| K: context [if ?B then _ else _] |- _ ⇒ destruct B as [Eq1|Eq2]
end;
destruct_if_post.
Tactic Notation "destruct_if" "in" hyp(H)
"as" simple_intropattern(Eq1) simple_intropattern(Eq2) :=
match type of H with context [if ?B then _ else _] ⇒
destruct B as [Eq1|Eq2] end;
destruct_if_post.
Tactic Notation "destruct_if" "as" simple_intropattern(Eq) :=
destruct_if as Eq Eq.
Tactic Notation "destruct_if" "in" hyp(H) "as" simple_intropattern(Eq) :=
destruct_if in H as Eq Eq.
Tactic Notation "destruct_if" :=
let Eq := fresh "C" in destruct_if as Eq Eq.
Tactic Notation "destruct_if" "in" hyp(H) :=
let Eq := fresh "C" in destruct_if in H as Eq Eq.
destruct_head_match performs a case analysis on the argument
of the head pattern matching when the goal has the form
match ?E with ... or match ?E with ... = _ or
_ = match ?E with .... Due to the limits of Ltac, this tactic
will not fail if a match does not occur. Instead, it might
perform a case analysis on an unspecified subterm from the goal.
Warning: experimental.
Ltac find_head_match T :=
match T with context [?E] ⇒
match T with
| E ⇒ fail 1
| _ ⇒ constr:(E)
end
end.
Ltac destruct_head_match_core cont :=
match goal with
| |- ?T1 = ?T2 ⇒ first [ let E := find_head_match T1 in cont E
| let E := find_head_match T2 in cont E ]
| |- ?T1 ⇒ let E := find_head_match T1 in cont E
end;
destruct_if_post.
Tactic Notation "destruct_head_match" "as" simple_intropattern(I) :=
destruct_head_match_core ltac:(fun E ⇒ destruct E as I).
Tactic Notation "destruct_head_match" :=
destruct_head_match_core ltac:(fun E ⇒ destruct E).
cases' E is similar to case_eq E except that it generates the
equality in the context and not in the goal. The syntax cases E as H
allows specifying the name H of that hypothesis.
Tactic Notation "cases'" constr(E) "as" ident(H) :=
let X := fresh "TEMP" in
set (X := E) in *; def_to_eq X H E;
destruct X.
Tactic Notation "cases'" constr(E) :=
let x := fresh "Eq" in cases' E as H.
cases_if' is similar to cases_if except that it generates
the symmetric equality.
Ltac cases_if_on' E Eq :=
match type of E with
| {_}+{_} ⇒ destruct E as [Eq|Eq]; try subst_hyp Eq
| _ ⇒ let X := fresh in
sets_eq X Eq: E;
destruct X
end; case_if_post.
Tactic Notation "cases_if'" "as" simple_intropattern(Eq) :=
match goal with
| |- context [if ?B then _ else _] ⇒ cases_if_on' B Eq
| K: context [if ?B then _ else _] |- _ ⇒ cases_if_on' B Eq
end.
Tactic Notation "cases_if'" :=
let Eq := fresh in cases_if' as Eq.
Induction
Require Import Coq.Program.Equality.
Ltac inductions_post :=
unfold eq' in ×.
Tactic Notation "inductions" ident(E) :=
dependent induction E; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) :=
dependent induction E generalizing X1; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2) :=
dependent induction E generalizing X1 X2; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2)
ident(X3) :=
dependent induction E generalizing X1 X2 X3; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2)
ident(X3) ident(X4) :=
dependent induction E generalizing X1 X2 X3 X4; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2)
ident(X3) ident(X4) ident(X5) :=
dependent induction E generalizing X1 X2 X3 X4 X5; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2)
ident(X3) ident(X4) ident(X5) ident(X6) :=
dependent induction E generalizing X1 X2 X3 X4 X5 X6; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2)
ident(X3) ident(X4) ident(X5) ident(X6) ident(X7) :=
dependent induction E generalizing X1 X2 X3 X4 X5 X6 X7; inductions_post.
Tactic Notation "inductions" ident(E) "gen" ident(X1) ident(X2)
ident(X3) ident(X4) ident(X5) ident(X6) ident(X7) ident(X8) :=
dependent induction E generalizing X1 X2 X3 X4 X5 X6 X7 X8; inductions_post.
induction_wf IH: E X is used to apply the well-founded induction
principle, for a given well-founded relation. It applies to a goal
PX where PX is a proposition on X. First, it sets up the
goal in the form (fun a ⇒ P a) X, using pattern X, and then
it applies the well-founded induction principle instantiated on E,
where E is a term of type well_founded R, and R is a binary
relation.
Syntaxes induction_wf: E X and induction_wf E X.
Tactic Notation "induction_wf" ident(IH) ":" constr(E) ident(X) :=
pattern X; apply (well_founded_ind E); clear X; intros X IH.
Tactic Notation "induction_wf" ":" constr(E) ident(X) :=
let IH := fresh "IH" in induction_wf IH: E X.
Tactic Notation "induction_wf" ":" constr(E) ident(X) :=
induction_wf: E X.
Decidable equality
Ltac decides_equality_tactic :=
first [ decide equality | progress(unfolds); decides_equality_tactic ].
Tactic Notation "decides_equality" :=
decides_equality_tactic.
Equivalence
Lemma iff_intro_swap : ∀ (P Q : Prop),
(Q → P) → (P → Q) → (P ↔ Q).
Proof. intuition. Qed.
Tactic Notation "iff" simple_intropattern(H1) simple_intropattern(H2) :=
split; [ intros H1 | intros H2 ].
Tactic Notation "iff" simple_intropattern(H) :=
iff H H.
Tactic Notation "iff" :=
let H := fresh "H" in iff H.
Tactic Notation "iff" "<-" simple_intropattern(H1) simple_intropattern(H2) :=
apply iff_intro_swap; [ intros H1 | intros H2 ].
Tactic Notation "iff" "<-" simple_intropattern(H) :=
iff <- H H.
Tactic Notation "iff" "<-" :=
let H := fresh "H" in iff <- H.
N-ary Conjunctions Splitting in Goals
Underlying implementation of splits.
Ltac splits_tactic N :=
match N with
| O ⇒ fail
| S O ⇒ idtac
| S ?N' ⇒ split; [| splits_tactic N']
end.
Ltac unfold_goal_until_conjunction :=
match goal with
| |- _ ∧ _ ⇒ idtac
| _ ⇒ progress(unfolds); unfold_goal_until_conjunction
end.
Ltac get_term_conjunction_arity T :=
match T with
| _ ∧ _ ∧ _ ∧ _ ∧ _ ∧ _ ∧ _ ∧ _ ⇒ constr:(8)
| _ ∧ _ ∧ _ ∧ _ ∧ _ ∧ _ ∧ _ ⇒ constr:(7)
| _ ∧ _ ∧ _ ∧ _ ∧ _ ∧ _ ⇒ constr:(6)
| _ ∧ _ ∧ _ ∧ _ ∧ _ ⇒ constr:(5)
| _ ∧ _ ∧ _ ∧ _ ⇒ constr:(4)
| _ ∧ _ ∧ _ ⇒ constr:(3)
| _ ∧ _ ⇒ constr:(2)
| _ → ?T' ⇒ get_term_conjunction_arity T'
| _ ⇒ let P := get_head T in
let T' := eval unfold P in T in
match T' with
| T ⇒ fail 1
| _ ⇒ get_term_conjunction_arity T'
end
end.
Ltac get_goal_conjunction_arity :=
match goal with |- ?T ⇒ get_term_conjunction_arity T end.
splits applies to a goal of the form (T1 ∧ .. ∧ TN) and
destruct it into N subgoals T1 .. TN. If the goal is not a
conjunction, then it unfolds the head definition.
Tactic Notation "splits" :=
unfold_goal_until_conjunction;
let N := get_goal_conjunction_arity in
splits_tactic N.
splits N is similar to splits, except that it will unfold as many
definitions as necessary to obtain an N-ary conjunction.
Tactic Notation "splits" constr(N) :=
let N := nat_from_number N in
splits_tactic N.
splits_all will recursively split any conjunction, unfolding
definitions when necessary. Warning: this tactic will loop
on goals of the form well_founded R. Todo: fix this
Ltac splits_all_base := repeat split.
Tactic Notation "splits_all" :=
splits_all_base.
N-ary Conjunctions Deconstruction
Underlying implementation of destructs.
Ltac destructs_conjunction_tactic N T :=
match N with
| 2 ⇒ destruct T as [? ?]
| 3 ⇒ destruct T as [? [? ?]]
| 4 ⇒ destruct T as [? [? [? ?]]]
| 5 ⇒ destruct T as [? [? [? [? ?]]]]
| 6 ⇒ destruct T as [? [? [? [? [? ?]]]]]
| 7 ⇒ destruct T as [? [? [? [? [? [? ?]]]]]]
end.
destructs T allows destructing a term T which is a N-ary
conjunction. It is equivalent to destruct T as (H1 .. HN),
except that it does not require to manually specify N different
names.
Tactic Notation "destructs" constr(T) :=
let TT := type of T in
let N := get_term_conjunction_arity TT in
destructs_conjunction_tactic N T.
destructs N T is equivalent to destruct T as (H1 .. HN),
except that it does not require to manually specify N different
names. Remark that it is not restricted to N-ary conjunctions.
Tactic Notation "destructs" constr(N) constr(T) :=
let N := nat_from_number N in
destructs_conjunction_tactic N T.
Proving goals which are N-ary disjunctions
Underlying implementation of branch.
Ltac branch_tactic K N :=
match constr:(K,N) with
| (_,0) ⇒ fail 1
| (0,_) ⇒ fail 1
| (1,1) ⇒ idtac
| (1,_) ⇒ left
| (S ?K', S ?N') ⇒ right; branch_tactic K' N'
end.
Ltac unfold_goal_until_disjunction :=
match goal with
| |- _ ∨ _ ⇒ idtac
| _ ⇒ progress(unfolds); unfold_goal_until_disjunction
end.
Ltac get_term_disjunction_arity T :=
match T with
| _ ∨ _ ∨ _ ∨ _ ∨ _ ∨ _ ∨ _ ∨ _ ⇒ constr:(8)
| _ ∨ _ ∨ _ ∨ _ ∨ _ ∨ _ ∨ _ ⇒ constr:(7)
| _ ∨ _ ∨ _ ∨ _ ∨ _ ∨ _ ⇒ constr:(6)
| _ ∨ _ ∨ _ ∨ _ ∨ _ ⇒ constr:(5)
| _ ∨ _ ∨ _ ∨ _ ⇒ constr:(4)
| _ ∨ _ ∨ _ ⇒ constr:(3)
| _ ∨ _ ⇒ constr:(2)
| _ → ?T' ⇒ get_term_disjunction_arity T'
| _ ⇒ let P := get_head T in
let T' := eval unfold P in T in
match T' with
| T ⇒ fail 1
| _ ⇒ get_term_disjunction_arity T'
end
end.
Ltac get_goal_disjunction_arity :=
match goal with |- ?T ⇒ get_term_disjunction_arity T end.
branch N applies to a goal of the form
P1 ∨ ... ∨ PK ∨ ... ∨ PN and leaves the goal PK.
It only able to unfold the head definition (if there is one),
but for more complex unfolding one should use the tactic
branch K of N.
Tactic Notation "branch" constr(K) :=
let K := nat_from_number K in
unfold_goal_until_disjunction;
let N := get_goal_disjunction_arity in
branch_tactic K N.
branch K of N is similar to branch K except that the
arity of the disjunction N is given manually, and so this
version of the tactic is able to unfold definitions.
In other words, applies to a goal of the form
P1 ∨ ... ∨ PK ∨ ... ∨ PN and leaves the goal PK.
Tactic Notation "branch" constr(K) "of" constr(N) :=
let N := nat_from_number N in
let K := nat_from_number K in
branch_tactic K N.
N-ary Disjunction Deconstruction
Underlying implementation of branches.
Ltac destructs_disjunction_tactic N T :=
match N with
| 2 ⇒ destruct T as [? | ?]
| 3 ⇒ destruct T as [? | [? | ?]]
| 4 ⇒ destruct T as [? | [? | [? | ?]]]
| 5 ⇒ destruct T as [? | [? | [? | [? | ?]]]]
end.
branches T allows destructing a term T which is a N-ary
disjunction. It is equivalent to destruct T as [ H1 | .. | HN ] ,
and produces N subgoals corresponding to the N possible cases.
Tactic Notation "branches" constr(T) :=
let TT := type of T in
let N := get_term_disjunction_arity TT in
destructs_disjunction_tactic N T.
branches N T is the same as branches T except that the arity is
forced to N. This version is useful to unfold definitions
on the fly.
Tactic Notation "branches" constr(N) constr(T) :=
let N := nat_from_number N in
destructs_disjunction_tactic N T.
N-ary Existentials
Ltac get_term_existential_arity T :=
match T with
| ∃ x1 x2 x3 x4 x5 x6 x7 x8, _ ⇒ constr:(8)
| ∃ x1 x2 x3 x4 x5 x6 x7, _ ⇒ constr:(7)
| ∃ x1 x2 x3 x4 x5 x6, _ ⇒ constr:(6)
| ∃ x1 x2 x3 x4 x5, _ ⇒ constr:(5)
| ∃ x1 x2 x3 x4, _ ⇒ constr:(4)
| ∃ x1 x2 x3, _ ⇒ constr:(3)
| ∃ x1 x2, _ ⇒ constr:(2)
| ∃ x1, _ ⇒ constr:(1)
| _ → ?T' ⇒ get_term_existential_arity T'
| _ ⇒ let P := get_head T in
let T' := eval unfold P in T in
match T' with
| T ⇒ fail 1
| _ ⇒ get_term_existential_arity T'
end
end.
Ltac get_goal_existential_arity :=
match goal with |- ?T ⇒ get_term_existential_arity T end.
∃ T1 ... TN is a shorthand for ∃ T1; ...; ∃ TN.
It is intended to prove goals of the form exist X1 .. XN, P.
If an argument provided is __ (double underscore), then an
evar is introduced. ∃ T1 .. TN ___ is equivalent to
∃ T1 .. TN __ __ __ with as many __ as possible.
Tactic Notation "exists_original" constr(T1) :=
∃ T1.
Tactic Notation "exists" constr(T1) :=
match T1 with
| ltac_wild ⇒ esplit
| ltac_wilds ⇒ repeat esplit
| _ ⇒ ∃ T1
end.
Tactic Notation "exists" constr(T1) constr(T2) :=
∃ T1; ∃ T2.
Tactic Notation "exists" constr(T1) constr(T2) constr(T3) :=
∃ T1; ∃ T2; ∃ T3.
Tactic Notation "exists" constr(T1) constr(T2) constr(T3) constr(T4) :=
∃ T1; ∃ T2; ∃ T3; ∃ T4.
Tactic Notation "exists" constr(T1) constr(T2) constr(T3) constr(T4)
constr(T5) :=
∃ T1; ∃ T2; ∃ T3; ∃ T4; ∃ T5.
Tactic Notation "exists" constr(T1) constr(T2) constr(T3) constr(T4)
constr(T5) constr(T6) :=
∃ T1; ∃ T2; ∃ T3; ∃ T4; ∃ T5; ∃ T6.
Tactic Notation "exists___" constr(N) :=
let rec aux N :=
match N with
| 0 ⇒ idtac
| S ?N' ⇒ esplit; aux N'
end in
let N := nat_from_number N in aux N.
Tactic Notation "exists___" :=
let N := get_goal_existential_arity in
exists___ N.
Existentials and conjunctions in hypotheses
todo: doc
Ltac intuit_core :=
repeat match goal with
| H: _ ∧ _ |- _ ⇒ destruct H
| H: ∃ a, _ |- _ ⇒ destruct H
end.
Ltac intuit_from H :=
first [ progress (intuit_core)
| destruct H; intuit_core ].
Tactic Notation "intuit" :=
intuit_core.
Tactic Notation "intuit" constr(H) :=
intuit_from H.
Tactics to prove typeclass instances
Tactic Notation "typeclass" :=
let go _ := eauto with typeclass_instances in
solve [ go tt | constructor; go tt ].
solve_typeclass is a simpler version of typeclass, to use
in hint tactics for resolving instances
Tactic Notation "solve_typeclass" :=
solve [ eauto with typeclass_instances ].
jauto, a new automation tactics
- open all the existentials and conjunctions from the context
- call esplit and split on the existentials and conjunctions in the goal
- call eauto.
Ltac jauto_set_hyps :=
repeat match goal with H: ?T |- _ ⇒
match T with
| _ ∧ _ ⇒ destruct H
| ∃ a, _ ⇒ destruct H
| _ ⇒ generalizes H
end
end.
Ltac jauto_set_goal :=
repeat match goal with
| |- ∃ a, _ ⇒ esplit
| |- _ ∧ _ ⇒ split
end.
Ltac jauto_set :=
intros; jauto_set_hyps;
intros; jauto_set_goal;
unfold not in ×.
Tactic Notation "jauto" :=
try solve [ jauto_set; eauto ].
Tactic Notation "jauto_fast" :=
try solve [ auto | eauto | jauto ].
iauto is a shorthand for intuition eauto
Tactic Notation "iauto" := try solve [intuition eauto].
Definitions of automation tactics
Ltac auto_tilde_default := auto.
Ltac auto_tilde := auto_tilde_default.
auto_star is the tactic which will be called each time a symbol
× is used after a tactic.
Ltac auto_star_default := try solve [ auto | eauto | intuition eauto ].
Ltac auto_star := auto_star_default.
auto¬ is a notation for tactic auto_tilde. It may be followed
by lemmas (or proofs terms) which auto will be able to use
for solving the goal.
Tactic Notation "auto" "~" :=
auto_tilde.
Tactic Notation "auto" "~" constr(E1) :=
lets: E1; auto_tilde.
Tactic Notation "auto" "~" constr(E1) constr(E2) :=
lets: E1; lets: E2; auto_tilde.
Tactic Notation "auto" "~" constr(E1) constr(E2) constr(E3) :=
lets: E1; lets: E2; lets: E3; auto_tilde.
auto× is a notation for tactic auto_star. It may be followed
by lemmas (or proofs terms) which auto will be able to use
for solving the goal.
Tactic Notation "auto" "*" :=
auto_star.
Tactic Notation "auto" "*" constr(E1) :=
lets: E1; auto_star.
Tactic Notation "auto" "*" constr(E1) constr(E2) :=
lets: E1; lets: E2; auto_star.
Tactic Notation "auto" "*" constr(E1) constr(E2) constr(E3) :=
lets: E1; lets: E2; lets: E3; auto_star.
auto_false is a version of auto able to spot some contradictions.
auto_false¬ and auto_false× are also available.
Ltac auto_false_base cont :=
try solve [ cont tt | tryfalse by congruence/
| try split; intros_all; tryfalse by congruence/ ].
Tactic Notation "auto_false" :=
auto_false_base ltac:(fun tt ⇒ auto).
Tactic Notation "auto_false" "~" :=
auto_false_base ltac:(fun tt ⇒ auto~).
Tactic Notation "auto_false" "*" :=
auto_false_base ltac:(fun tt ⇒ auto*).
Tactic Notation "f_equal" :=
f_equal.
Tactic Notation "constructor" :=
constructor.
Tactic Notation "simple" :=
simpl.
Parsing for light automation
- cuts and asserts only call auto on their first subgoal,
- apply¬ relies on sapply rather than apply,
- tryfalse¬ is defined as tryfalse by auto_tilde.
Tactic Notation "equates" "~" constr(E) :=
equates E; auto¬.
Tactic Notation "equates" "~" constr(n1) constr(n2) :=
equates n1 n2; auto¬.
Tactic Notation "equates" "~" constr(n1) constr(n2) constr(n3) :=
equates n1 n2 n3; auto¬.
Tactic Notation "equates" "~" constr(n1) constr(n2) constr(n3) constr(n4) :=
equates n1 n2 n3 n4; auto¬.
Tactic Notation "applys_eq" "~" constr(H) constr(E) :=
applys_eq H E; auto_tilde.
Tactic Notation "applys_eq" "~" constr(H) constr(n1) constr(n2) :=
applys_eq H n1 n2; auto_tilde.
Tactic Notation "applys_eq" "~" constr(H) constr(n1) constr(n2) constr(n3) :=
applys_eq H n1 n2 n3; auto_tilde.
Tactic Notation "applys_eq" "~" constr(H) constr(n1) constr(n2) constr(n3) constr(n4) :=
applys_eq H n1 n2 n3 n4; auto_tilde.
Tactic Notation "apply" "~" constr(H) :=
sapply H; auto_tilde.
Tactic Notation "destruct" "~" constr(H) :=
destruct H; auto_tilde.
Tactic Notation "destruct" "~" constr(H) "as" simple_intropattern(I) :=
destruct H as I; auto_tilde.
Tactic Notation "f_equal" "~" :=
f_equal; auto_tilde.
Tactic Notation "induction" "~" constr(H) :=
induction H; auto_tilde.
Tactic Notation "inversion" "~" constr(H) :=
inversion H; auto_tilde.
Tactic Notation "split" "~" :=
split; auto_tilde.
Tactic Notation "subst" "~" :=
subst; auto_tilde.
Tactic Notation "right" "~" :=
right; auto_tilde.
Tactic Notation "left" "~" :=
left; auto_tilde.
Tactic Notation "constructor" "~" :=
constructor; auto_tilde.
Tactic Notation "constructors" "~" :=
constructors; auto_tilde.
Tactic Notation "false" "~" :=
false; auto_tilde.
Tactic Notation "false" "~" constr(T) :=
false T by auto_tilde/.
Tactic Notation "tryfalse" "~" :=
tryfalse by auto_tilde/.
Tactic Notation "tryfalse_invert" "~" :=
first [ tryfalse¬ | false_invert ].
Tactic Notation "asserts" "~" simple_intropattern(H) ":" constr(E) :=
asserts H: E; [ auto_tilde | idtac ].
Tactic Notation "cuts" "~" simple_intropattern(H) ":" constr(E) :=
cuts H: E; [ auto_tilde | idtac ].
Tactic Notation "cuts" "~" ":" constr(E) :=
cuts: E; [ auto_tilde | idtac ].
Tactic Notation "lets" "~" simple_intropattern(I) ":" constr(E) :=
lets I: E; auto_tilde.
Tactic Notation "lets" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) :=
lets I: E0 A1; auto_tilde.
Tactic Notation "lets" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) :=
lets I: E0 A1 A2; auto_tilde.
Tactic Notation "lets" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets I: E0 A1 A2 A3; auto_tilde.
Tactic Notation "lets" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets I: E0 A1 A2 A3 A4; auto_tilde.
Tactic Notation "lets" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets I: E0 A1 A2 A3 A4 A5; auto_tilde.
Tactic Notation "lets" "~" ":" constr(E) :=
lets: E; auto_tilde.
Tactic Notation "lets" "~" ":" constr(E0)
constr(A1) :=
lets: E0 A1; auto_tilde.
Tactic Notation "lets" "~" ":" constr(E0)
constr(A1) constr(A2) :=
lets: E0 A1 A2; auto_tilde.
Tactic Notation "lets" "~" ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets: E0 A1 A2 A3; auto_tilde.
Tactic Notation "lets" "~" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets: E0 A1 A2 A3 A4; auto_tilde.
Tactic Notation "lets" "~" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets: E0 A1 A2 A3 A4 A5; auto_tilde.
Tactic Notation "forwards" "~" simple_intropattern(I) ":" constr(E) :=
forwards I: E; auto_tilde.
Tactic Notation "forwards" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) :=
forwards I: E0 A1; auto_tilde.
Tactic Notation "forwards" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) :=
forwards I: E0 A1 A2; auto_tilde.
Tactic Notation "forwards" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
forwards I: E0 A1 A2 A3; auto_tilde.
Tactic Notation "forwards" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
forwards I: E0 A1 A2 A3 A4; auto_tilde.
Tactic Notation "forwards" "~" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
forwards I: E0 A1 A2 A3 A4 A5; auto_tilde.
Tactic Notation "forwards" "~" ":" constr(E) :=
forwards: E; auto_tilde.
Tactic Notation "forwards" "~" ":" constr(E0)
constr(A1) :=
forwards: E0 A1; auto_tilde.
Tactic Notation "forwards" "~" ":" constr(E0)
constr(A1) constr(A2) :=
forwards: E0 A1 A2; auto_tilde.
Tactic Notation "forwards" "~" ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
forwards: E0 A1 A2 A3; auto_tilde.
Tactic Notation "forwards" "~" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
forwards: E0 A1 A2 A3 A4; auto_tilde.
Tactic Notation "forwards" "~" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
forwards: E0 A1 A2 A3 A4 A5; auto_tilde.
Tactic Notation "applys" "~" constr(H) :=
sapply H; auto_tilde. Tactic Notation "applys" "~" constr(E0) constr(A1) :=
applys E0 A1; auto_tilde.
Tactic Notation "applys" "~" constr(E0) constr(A1) :=
applys E0 A1; auto_tilde.
Tactic Notation "applys" "~" constr(E0) constr(A1) constr(A2) :=
applys E0 A1 A2; auto_tilde.
Tactic Notation "applys" "~" constr(E0) constr(A1) constr(A2) constr(A3) :=
applys E0 A1 A2 A3; auto_tilde.
Tactic Notation "applys" "~" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) :=
applys E0 A1 A2 A3 A4; auto_tilde.
Tactic Notation "applys" "~" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
applys E0 A1 A2 A3 A4 A5; auto_tilde.
Tactic Notation "specializes" "~" hyp(H) :=
specializes H; auto_tilde.
Tactic Notation "specializes" "~" hyp(H) constr(A1) :=
specializes H A1; auto_tilde.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) :=
specializes H A1 A2; auto_tilde.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) :=
specializes H A1 A2 A3; auto_tilde.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) constr(A4) :=
specializes H A1 A2 A3 A4; auto_tilde.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
specializes H A1 A2 A3 A4 A5; auto_tilde.
Tactic Notation "fapply" "~" constr(E) :=
fapply E; auto_tilde.
Tactic Notation "sapply" "~" constr(E) :=
sapply E; auto_tilde.
Tactic Notation "logic" "~" constr(E) :=
logic_base E ltac:(fun _ ⇒ auto_tilde).
Tactic Notation "intros_all" "~" :=
intros_all; auto_tilde.
Tactic Notation "unfolds" "~" :=
unfolds; auto_tilde.
Tactic Notation "unfolds" "~" reference(F1) :=
unfolds F1; auto_tilde.
Tactic Notation "unfolds" "~" reference(F1) "," reference(F2) :=
unfolds F1, F2; auto_tilde.
Tactic Notation "unfolds" "~" reference(F1) "," reference(F2) "," reference(F3) :=
unfolds F1, F2, F3; auto_tilde.
Tactic Notation "unfolds" "~" reference(F1) "," reference(F2) "," reference(F3) ","
reference(F4) :=
unfolds F1, F2, F3, F4; auto_tilde.
Tactic Notation "simple" "~" :=
simpl; auto_tilde.
Tactic Notation "simple" "~" "in" hyp(H) :=
simpl in H; auto_tilde.
Tactic Notation "simpls" "~" :=
simpls; auto_tilde.
Tactic Notation "hnfs" "~" :=
hnfs; auto_tilde.
Tactic Notation "substs" "~" :=
substs; auto_tilde.
Tactic Notation "intro_hyp" "~" hyp(H) :=
subst_hyp H; auto_tilde.
Tactic Notation "intro_subst" "~" :=
intro_subst; auto_tilde.
Tactic Notation "subst_eq" "~" constr(E) :=
subst_eq E; auto_tilde.
Tactic Notation "rewrite" "~" constr(E) :=
rewrite E; auto_tilde.
Tactic Notation "rewrite" "~" "<-" constr(E) :=
rewrite <- E; auto_tilde.
Tactic Notation "rewrite" "~" constr(E) "in" hyp(H) :=
rewrite E in H; auto_tilde.
Tactic Notation "rewrite" "~" "<-" constr(E) "in" hyp(H) :=
rewrite <- E in H; auto_tilde.
Tactic Notation "rewrite_all" "~" constr(E) :=
rewrite_all E; auto_tilde.
Tactic Notation "rewrite_all" "~" "<-" constr(E) :=
rewrite_all <- E; auto_tilde.
Tactic Notation "rewrite_all" "~" constr(E) "in" ident(H) :=
rewrite_all E in H; auto_tilde.
Tactic Notation "rewrite_all" "~" "<-" constr(E) "in" ident(H) :=
rewrite_all <- E in H; auto_tilde.
Tactic Notation "rewrite_all" "~" constr(E) "in" "*" :=
rewrite_all E in *; auto_tilde.
Tactic Notation "rewrite_all" "~" "<-" constr(E) "in" "*" :=
rewrite_all <- E in *; auto_tilde.
Tactic Notation "asserts_rewrite" "~" constr(E) :=
asserts_rewrite E; auto_tilde.
Tactic Notation "asserts_rewrite" "~" "<-" constr(E) :=
asserts_rewrite <- E; auto_tilde.
Tactic Notation "asserts_rewrite" "~" constr(E) "in" hyp(H) :=
asserts_rewrite E in H; auto_tilde.
Tactic Notation "asserts_rewrite" "~" "<-" constr(E) "in" hyp(H) :=
asserts_rewrite <- E in H; auto_tilde.
Tactic Notation "cuts_rewrite" "~" constr(E) :=
cuts_rewrite E; auto_tilde.
Tactic Notation "cuts_rewrite" "~" "<-" constr(E) :=
cuts_rewrite <- E; auto_tilde.
Tactic Notation "cuts_rewrite" "~" constr(E) "in" hyp(H) :=
cuts_rewrite E in H; auto_tilde.
Tactic Notation "cuts_rewrite" "~" "<-" constr(E) "in" hyp(H) :=
cuts_rewrite <- E in H; auto_tilde.
Tactic Notation "fequal" "~" :=
fequal; auto_tilde.
Tactic Notation "fequals" "~" :=
fequals; auto_tilde.
Tactic Notation "pi_rewrite" "~" constr(E) :=
pi_rewrite E; auto_tilde.
Tactic Notation "pi_rewrite" "~" constr(E) "in" hyp(H) :=
pi_rewrite E in H; auto_tilde.
Tactic Notation "invert" "~" hyp(H) :=
invert H; auto_tilde.
Tactic Notation "inverts" "~" hyp(H) :=
inverts H; auto_tilde.
Tactic Notation "injects" "~" hyp(H) :=
injects H; auto_tilde.
Tactic Notation "inversions" "~" hyp(H) :=
inversions H; auto_tilde.
Tactic Notation "cases" "~" constr(E) "as" ident(H) :=
cases E as H; auto_tilde.
Tactic Notation "cases" "~" constr(E) :=
cases E; auto_tilde.
Tactic Notation "case_if" "~" :=
case_if; auto_tilde.
Tactic Notation "case_if" "~" "in" hyp(H) :=
case_if in H; auto_tilde.
Tactic Notation "cases_if" "~" :=
cases_if; auto_tilde.
Tactic Notation "cases_if" "~" "in" hyp(H) :=
cases_if in H; auto_tilde.
Tactic Notation "destruct_if" "~" :=
destruct_if; auto_tilde.
Tactic Notation "destruct_if" "~" "in" hyp(H) :=
destruct_if in H; auto_tilde.
Tactic Notation "destruct_head_match" "~" :=
destruct_head_match; auto_tilde.
Tactic Notation "cases'" "~" constr(E) "as" ident(H) :=
cases' E as H; auto_tilde.
Tactic Notation "cases'" "~" constr(E) :=
cases' E; auto_tilde.
Tactic Notation "cases_if'" "~" "as" ident(H) :=
cases_if' as H; auto_tilde.
Tactic Notation "cases_if'" "~" :=
cases_if'; auto_tilde.
Tactic Notation "decides_equality" "~" :=
decides_equality; auto_tilde.
Tactic Notation "iff" "~" :=
iff; auto_tilde.
Tactic Notation "splits" "~" :=
splits; auto_tilde.
Tactic Notation "splits" "~" constr(N) :=
splits N; auto_tilde.
Tactic Notation "splits_all" "~" :=
splits_all; auto_tilde.
Tactic Notation "destructs" "~" constr(T) :=
destructs T; auto_tilde.
Tactic Notation "destructs" "~" constr(N) constr(T) :=
destructs N T; auto_tilde.
Tactic Notation "branch" "~" constr(N) :=
branch N; auto_tilde.
Tactic Notation "branch" "~" constr(K) "of" constr(N) :=
branch K of N; auto_tilde.
Tactic Notation "branches" "~" constr(T) :=
branches T; auto_tilde.
Tactic Notation "branches" "~" constr(N) constr(T) :=
branches N T; auto_tilde.
Tactic Notation "exists___" "~" :=
exists___; auto_tilde.
Tactic Notation "exists" "~" constr(T1) :=
∃ T1; auto_tilde.
Tactic Notation "exists" "~" constr(T1) constr(T2) :=
∃ T1 T2; auto_tilde.
Tactic Notation "exists" "~" constr(T1) constr(T2) constr(T3) :=
∃ T1 T2 T3; auto_tilde.
Tactic Notation "exists" "~" constr(T1) constr(T2) constr(T3) constr(T4) :=
∃ T1 T2 T3 T4; auto_tilde.
Tactic Notation "exists" "~" constr(T1) constr(T2) constr(T3) constr(T4)
constr(T5) :=
∃ T1 T2 T3 T4 T5; auto_tilde.
Tactic Notation "exists" "~" constr(T1) constr(T2) constr(T3) constr(T4)
constr(T5) constr(T6) :=
∃ T1 T2 T3 T4 T5 T6; auto_tilde.
Parsing for strong automation
Tactic Notation "equates" "*" constr(E) :=
equates E; auto_star.
Tactic Notation "equates" "*" constr(n1) constr(n2) :=
equates n1 n2; auto_star.
Tactic Notation "equates" "*" constr(n1) constr(n2) constr(n3) :=
equates n1 n2 n3; auto_star.
Tactic Notation "equates" "*" constr(n1) constr(n2) constr(n3) constr(n4) :=
equates n1 n2 n3 n4; auto_star.
Tactic Notation "applys_eq" "*" constr(H) constr(E) :=
applys_eq H E; auto_star.
Tactic Notation "applys_eq" "*" constr(H) constr(n1) constr(n2) :=
applys_eq H n1 n2; auto_star.
Tactic Notation "applys_eq" "*" constr(H) constr(n1) constr(n2) constr(n3) :=
applys_eq H n1 n2 n3; auto_star.
Tactic Notation "applys_eq" "*" constr(H) constr(n1) constr(n2) constr(n3) constr(n4) :=
applys_eq H n1 n2 n3 n4; auto_star.
Tactic Notation "apply" "*" constr(H) :=
sapply H; auto_star.
Tactic Notation "destruct" "*" constr(H) :=
destruct H; auto_star.
Tactic Notation "destruct" "*" constr(H) "as" simple_intropattern(I) :=
destruct H as I; auto_star.
Tactic Notation "f_equal" "*" :=
f_equal; auto_star.
Tactic Notation "induction" "*" constr(H) :=
induction H; auto_star.
Tactic Notation "inversion" "*" constr(H) :=
inversion H; auto_star.
Tactic Notation "split" "*" :=
split; auto_star.
Tactic Notation "subs" "*" :=
subst; auto_star.
Tactic Notation "subst" "*" :=
subst; auto_star.
Tactic Notation "right" "*" :=
right; auto_star.
Tactic Notation "left" "*" :=
left; auto_star.
Tactic Notation "constructor" "*" :=
constructor; auto_star.
Tactic Notation "constructors" "*" :=
constructors; auto_star.
Tactic Notation "false" "*" :=
false; auto_star.
Tactic Notation "false" "*" constr(T) :=
false T by auto_star/.
Tactic Notation "tryfalse" "*" :=
tryfalse by auto_star/.
Tactic Notation "tryfalse_invert" "*" :=
first [ tryfalse× | false_invert ].
Tactic Notation "asserts" "*" simple_intropattern(H) ":" constr(E) :=
asserts H: E; [ auto_star | idtac ].
Tactic Notation "cuts" "*" simple_intropattern(H) ":" constr(E) :=
cuts H: E; [ auto_star | idtac ].
Tactic Notation "cuts" "*" ":" constr(E) :=
cuts: E; [ auto_star | idtac ].
Tactic Notation "lets" "*" simple_intropattern(I) ":" constr(E) :=
lets I: E; auto_star.
Tactic Notation "lets" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) :=
lets I: E0 A1; auto_star.
Tactic Notation "lets" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) :=
lets I: E0 A1 A2; auto_star.
Tactic Notation "lets" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets I: E0 A1 A2 A3; auto_star.
Tactic Notation "lets" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets I: E0 A1 A2 A3 A4; auto_star.
Tactic Notation "lets" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets I: E0 A1 A2 A3 A4 A5; auto_star.
Tactic Notation "lets" "*" ":" constr(E) :=
lets: E; auto_star.
Tactic Notation "lets" "*" ":" constr(E0)
constr(A1) :=
lets: E0 A1; auto_star.
Tactic Notation "lets" "*" ":" constr(E0)
constr(A1) constr(A2) :=
lets: E0 A1 A2; auto_star.
Tactic Notation "lets" "*" ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
lets: E0 A1 A2 A3; auto_star.
Tactic Notation "lets" "*" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
lets: E0 A1 A2 A3 A4; auto_star.
Tactic Notation "lets" "*" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
lets: E0 A1 A2 A3 A4 A5; auto_star.
Tactic Notation "forwards" "*" simple_intropattern(I) ":" constr(E) :=
forwards I: E; auto_star.
Tactic Notation "forwards" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) :=
forwards I: E0 A1; auto_star.
Tactic Notation "forwards" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) :=
forwards I: E0 A1 A2; auto_star.
Tactic Notation "forwards" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
forwards I: E0 A1 A2 A3; auto_star.
Tactic Notation "forwards" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
forwards I: E0 A1 A2 A3 A4; auto_star.
Tactic Notation "forwards" "*" simple_intropattern(I) ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
forwards I: E0 A1 A2 A3 A4 A5; auto_star.
Tactic Notation "forwards" "*" ":" constr(E) :=
forwards: E; auto_star.
Tactic Notation "forwards" "*" ":" constr(E0)
constr(A1) :=
forwards: E0 A1; auto_star.
Tactic Notation "forwards" "*" ":" constr(E0)
constr(A1) constr(A2) :=
forwards: E0 A1 A2; auto_star.
Tactic Notation "forwards" "*" ":" constr(E0)
constr(A1) constr(A2) constr(A3) :=
forwards: E0 A1 A2 A3; auto_star.
Tactic Notation "forwards" "*" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) :=
forwards: E0 A1 A2 A3 A4; auto_star.
Tactic Notation "forwards" "*" ":" constr(E0)
constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
forwards: E0 A1 A2 A3 A4 A5; auto_star.
Tactic Notation "applys" "*" constr(H) :=
sapply H; auto_star. Tactic Notation "applys" "*" constr(E0) constr(A1) :=
applys E0 A1; auto_star.
Tactic Notation "applys" "*" constr(E0) constr(A1) :=
applys E0 A1; auto_star.
Tactic Notation "applys" "*" constr(E0) constr(A1) constr(A2) :=
applys E0 A1 A2; auto_star.
Tactic Notation "applys" "*" constr(E0) constr(A1) constr(A2) constr(A3) :=
applys E0 A1 A2 A3; auto_star.
Tactic Notation "applys" "*" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) :=
applys E0 A1 A2 A3 A4; auto_star.
Tactic Notation "applys" "*" constr(E0) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
applys E0 A1 A2 A3 A4 A5; auto_star.
Tactic Notation "specializes" "*" hyp(H) :=
specializes H; auto_star.
Tactic Notation "specializes" "~" hyp(H) constr(A1) :=
specializes H A1; auto_star.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) :=
specializes H A1 A2; auto_star.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) :=
specializes H A1 A2 A3; auto_star.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) constr(A4) :=
specializes H A1 A2 A3 A4; auto_star.
Tactic Notation "specializes" hyp(H) constr(A1) constr(A2) constr(A3) constr(A4) constr(A5) :=
specializes H A1 A2 A3 A4 A5; auto_star.
Tactic Notation "fapply" "*" constr(E) :=
fapply E; auto_star.
Tactic Notation "sapply" "*" constr(E) :=
sapply E; auto_star.
Tactic Notation "logic" constr(E) :=
logic_base E ltac:(fun _ ⇒ auto_star).
Tactic Notation "intros_all" "*" :=
intros_all; auto_star.
Tactic Notation "unfolds" "*" :=
unfolds; auto_star.
Tactic Notation "unfolds" "*" reference(F1) :=
unfolds F1; auto_star.
Tactic Notation "unfolds" "*" reference(F1) "," reference(F2) :=
unfolds F1, F2; auto_star.
Tactic Notation "unfolds" "*" reference(F1) "," reference(F2) "," reference(F3) :=
unfolds F1, F2, F3; auto_star.
Tactic Notation "unfolds" "*" reference(F1) "," reference(F2) "," reference(F3) ","
reference(F4) :=
unfolds F1, F2, F3, F4; auto_star.
Tactic Notation "simple" "*" :=
simpl; auto_star.
Tactic Notation "simple" "*" "in" hyp(H) :=
simpl in H; auto_star.
Tactic Notation "simpls" "*" :=
simpls; auto_star.
Tactic Notation "hnfs" "*" :=
hnfs; auto_star.
Tactic Notation "substs" "*" :=
substs; auto_star.
Tactic Notation "intro_hyp" "*" hyp(H) :=
subst_hyp H; auto_star.
Tactic Notation "intro_subst" "*" :=
intro_subst; auto_star.
Tactic Notation "subst_eq" "*" constr(E) :=
subst_eq E; auto_star.
Tactic Notation "rewrite" "*" constr(E) :=
rewrite E; auto_star.
Tactic Notation "rewrite" "*" "<-" constr(E) :=
rewrite <- E; auto_star.
Tactic Notation "rewrite" "*" constr(E) "in" hyp(H) :=
rewrite E in H; auto_star.
Tactic Notation "rewrite" "*" "<-" constr(E) "in" hyp(H) :=
rewrite <- E in H; auto_star.
Tactic Notation "rewrite_all" "*" constr(E) :=
rewrite_all E; auto_star.
Tactic Notation "rewrite_all" "*" "<-" constr(E) :=
rewrite_all <- E; auto_star.
Tactic Notation "rewrite_all" "*" constr(E) "in" ident(H) :=
rewrite_all E in H; auto_star.
Tactic Notation "rewrite_all" "*" "<-" constr(E) "in" ident(H) :=
rewrite_all <- E in H; auto_star.
Tactic Notation "rewrite_all" "*" constr(E) "in" "*" :=
rewrite_all E in *; auto_star.
Tactic Notation "rewrite_all" "*" "<-" constr(E) "in" "*" :=
rewrite_all <- E in *; auto_star.
Tactic Notation "asserts_rewrite" "*" constr(E) :=
asserts_rewrite E; auto_star.
Tactic Notation "asserts_rewrite" "*" "<-" constr(E) :=
asserts_rewrite <- E; auto_star.
Tactic Notation "asserts_rewrite" "*" constr(E) "in" hyp(H) :=
asserts_rewrite E; auto_star.
Tactic Notation "asserts_rewrite" "*" "<-" constr(E) "in" hyp(H) :=
asserts_rewrite <- E; auto_star.
Tactic Notation "cuts_rewrite" "*" constr(E) :=
cuts_rewrite E; auto_star.
Tactic Notation "cuts_rewrite" "*" "<-" constr(E) :=
cuts_rewrite <- E; auto_star.
Tactic Notation "cuts_rewrite" "*" constr(E) "in" hyp(H) :=
cuts_rewrite E in H; auto_star.
Tactic Notation "cuts_rewrite" "*" "<-" constr(E) "in" hyp(H) :=
cuts_rewrite <- E in H; auto_star.
Tactic Notation "fequal" "*" :=
fequal; auto_star.
Tactic Notation "fequals" "*" :=
fequals; auto_star.
Tactic Notation "pi_rewrite" "*" constr(E) :=
pi_rewrite E; auto_star.
Tactic Notation "pi_rewrite" "*" constr(E) "in" hyp(H) :=
pi_rewrite E in H; auto_star.
Tactic Notation "invert" "*" hyp(H) :=
invert H; auto_star.
Tactic Notation "inverts" "*" hyp(H) :=
inverts H; auto_star.
Tactic Notation "injects" "*" hyp(H) :=
injects H; auto_star.
Tactic Notation "inversions" "*" hyp(H) :=
inversions H; auto_star.
Tactic Notation "cases" "*" constr(E) "as" ident(H) :=
cases E as H; auto_star.
Tactic Notation "cases" "*" constr(E) :=
cases E; auto_star.
Tactic Notation "case_if" "*" :=
case_if; auto_star.
Tactic Notation "case_if" "*" "in" hyp(H) :=
case_if in H; auto_star.
Tactic Notation "cases_if" "*" :=
cases_if; auto_star.
Tactic Notation "cases_if" "*" "in" hyp(H) :=
cases_if in H; auto_star.
Tactic Notation "destruct_if" "*" :=
destruct_if; auto_star.
Tactic Notation "destruct_if" "*" "in" hyp(H) :=
destruct_if in H; auto_star.
Tactic Notation "destruct_head_match" "*" :=
destruct_head_match; auto_star.
Tactic Notation "cases'" "*" constr(E) "as" ident(H) :=
cases' E as H; auto_star.
Tactic Notation "cases'" "*" constr(E) :=
cases' E; auto_star.
Tactic Notation "cases_if'" "*" "as" ident(H) :=
cases_if' as H; auto_star.
Tactic Notation "cases_if'" "*" :=
cases_if'; auto_star.
Tactic Notation "decides_equality" "*" :=
decides_equality; auto_star.
Tactic Notation "iff" "*" :=
iff; auto_star.
Tactic Notation "splits" "*" :=
splits; auto_star.
Tactic Notation "splits" "*" constr(N) :=
splits N; auto_star.
Tactic Notation "splits_all" "*" :=
splits_all; auto_star.
Tactic Notation "destructs" "*" constr(T) :=
destructs T; auto_star.
Tactic Notation "destructs" "*" constr(N) constr(T) :=
destructs N T; auto_star.
Tactic Notation "branch" "*" constr(N) :=
branch N; auto_star.
Tactic Notation "branch" "*" constr(K) "of" constr(N) :=
branch K of N; auto_star.
Tactic Notation "branches" "*" constr(T) :=
branches T; auto_star.
Tactic Notation "branches" "*" constr(N) constr(T) :=
branches N T; auto_star.
Tactic Notation "exists___" "*" :=
exists___; auto_star.
Tactic Notation "exists" "*" constr(T1) :=
∃ T1; auto_star.
Tactic Notation "exists" "*" constr(T1) constr(T2) :=
∃ T1 T2; auto_star.
Tactic Notation "exists" "*" constr(T1) constr(T2) constr(T3) :=
∃ T1 T2 T3; auto_star.
Tactic Notation "exists" "*" constr(T1) constr(T2) constr(T3) constr(T4) :=
∃ T1 T2 T3 T4; auto_star.
Tactic Notation "exists" "*" constr(T1) constr(T2) constr(T3) constr(T4)
constr(T5) :=
∃ T1 T2 T3 T4 T5; auto_star.
Tactic Notation "exists" "*" constr(T1) constr(T2) constr(T3) constr(T4)
constr(T5) constr(T6) :=
∃ T1 T2 T3 T4 T5 T6; auto_star.
Definition ltac_something (P:Type) (e:P) := e.
Notation "'Something'" :=
(@ltac_something _ _).
Lemma ltac_something_eq : ∀ (e:Type),
e = (@ltac_something _ e).
Proof. auto. Qed.
Lemma ltac_something_hide : ∀ (e:Type),
e → (@ltac_something _ e).
Proof. auto. Qed.
Lemma ltac_something_show : ∀ (e:Type),
(@ltac_something _ e) → e.
Proof. auto. Qed.
Tactic Notation "hide_def" hyp(x) :=
let x' := constr:(x) in
let T := eval unfold x in x' in
change T with (@ltac_something _ T) in x.
Tactic Notation "show_def" hyp(x) :=
let x' := constr:(x) in
let U := eval unfold x in x' in
match U with @ltac_something _ ?T ⇒
change U with T in x end.
show_def unfolds Something in the goal
Tactic Notation "show_def" :=
unfold ltac_something.
Tactic Notation "show_def" "in" "*" :=
unfold ltac_something in ×.
hide_defs and show_defs applies to all definitions
Tactic Notation "hide_defs" :=
repeat match goal with H := ?T |- _ ⇒
match T with
| @ltac_something _ _ ⇒ fail 1
| _ ⇒ change T with (@ltac_something _ T) in H
end
end.
Tactic Notation "show_defs" :=
repeat match goal with H := (@ltac_something _ ?T) |- _ ⇒
change (@ltac_something _ T) with T in H end.
hide_hyp H replaces the type of H with the notation Something
and show_hyp H reveals the type of the hypothesis. Note that the
hidden type of H remains convertible the real type of H.
Tactic Notation "show_hyp" hyp(H) :=
apply ltac_something_show in H.
Tactic Notation "hide_hyp" hyp(H) :=
apply ltac_something_hide in H.
hide_hyps and show_hyps can be used to hide/show all hypotheses
of type Prop.
Tactic Notation "show_hyps" :=
repeat match goal with
H: @ltac_something _ _ |- _ ⇒ show_hyp H end.
Tactic Notation "hide_hyps" :=
repeat match goal with H: ?T |- _ ⇒
match type of T with
| Prop ⇒
match T with
| @ltac_something _ _ ⇒ fail 2
| _ ⇒ hide_hyp H
end
| _ ⇒ fail 1
end
end.
hide H and show H automatically select between
hide_hyp or hide_def, and show_hyp or show_def.
Similarly hide_all and show_all apply to all.
Tactic Notation "hide" hyp(H) :=
first [hide_def H | hide_hyp H].
Tactic Notation "show" hyp(H) :=
first [show_def H | show_hyp H].
Tactic Notation "hide_all" :=
hide_hyps; hide_defs.
Tactic Notation "show_all" :=
unfold ltac_something in ×.
hide_term E can be used to hide a term from the goal.
show_term or show_term E can be used to reveal it.
hide_term E in H can be used to specify an hypothesis.
Tactic Notation "hide_term" constr(E) :=
change E with (@ltac_something _ E).
Tactic Notation "show_term" constr(E) :=
change (@ltac_something _ E) with E.
Tactic Notation "show_term" :=
unfold ltac_something.
Tactic Notation "hide_term" constr(E) "in" hyp(H) :=
change E with (@ltac_something _ E) in H.
Tactic Notation "show_term" constr(E) "in" hyp(H) :=
change (@ltac_something _ E) with E in H.
Tactic Notation "show_term" "in" hyp(H) :=
unfold ltac_something in H.
Sorting hypotheses
Ltac sort_tactic :=
try match goal with H: ?T |- _ ⇒
match type of T with Prop ⇒
generalizes H; (try sort_tactic); intro
end end.
Tactic Notation "sort" :=
sort_tactic.
Clearing hypotheses
Tactic Notation "clears" ident(X1) :=
let rec doit _ :=
match goal with
| H:context[X1] |- _ ⇒ clear H; try (doit tt)
| _ ⇒ clear X1
end in doit tt.
Tactic Notation "clears" ident(X1) ident(X2) :=
clears X1; clears X2.
Tactic Notation "clears" ident(X1) ident(X2) ident(X3) :=
clears X1; clears X2; clear X3.
Tactic Notation "clears" ident(X1) ident(X2) ident(X3) ident(X4) :=
clears X1; clears X2; clear X3; clear X4.
Tactic Notation "clears" ident(X1) ident(X2) ident(X3) ident(X4)
ident(X5) :=
clears X1; clears X2; clear X3; clear X4; clear X5.
Tactic Notation "clears" ident(X1) ident(X2) ident(X3) ident(X4)
ident(X5) ident(X6) :=
clears X1; clears X2; clear X3; clear X4; clear X5; clear X6.
clears (without any argument) clears all the unused variables
from the context. In other words, it removes any variable
which is not a proposition (i.e. not of type Prop) and which
does not appear in another hypothesis nor in the goal.
Ltac clears_tactic :=
match goal with H: ?T |- _ ⇒
match type of T with
| Prop ⇒ generalizes H; (try clears_tactic); intro
| ?TT ⇒ clear H; (try clears_tactic)
| ?TT ⇒ generalizes H; (try clears_tactic); intro
end end.
Tactic Notation "clears" :=
clears_tactic.
clears_all clears all the hypotheses from the context
that can be cleared. It leaves only the hypotheses that
are mentioned in the goal.
Tactic Notation "clears_all" :=
repeat match goal with H: _ |- _ ⇒ clear H end.
clears_last clears the last hypothesis in the context.
clears_last N clears the last N hypotheses in the context.
Tactic Notation "clears_last" :=
match goal with H: ?T |- _ ⇒ clear H end.
Ltac clears_last_base N :=
match nat_from_number N with
| 0 ⇒ idtac
| S ?p ⇒ clears_last; clears_last_base p
end.
Tactic Notation "clears_last" constr(N) :=
clears_last_base N.
Skipping subgoals
Ltac skip_with_existential :=
match goal with |- ?G ⇒
let H := fresh in evar(H:G); eexact H end.
Variable skip_axiom : False.
Ltac skip_with_axiom :=
elimtype False; apply skip_axiom.
Tactic Notation "skip" :=
skip_with_axiom.
Tactic Notation "skip'" :=
skip_with_existential.
skip H: T adds an assumption named H of type T to the
current context, blindly assuming that it is true.
skip: T and skip H_asserts: T and skip_asserts: T
are other possible syntax.
Note that H may be an intro pattern.
The syntax skip H1 .. HN: T can be used when T is a
conjunction of N items.
Tactic Notation "skip" simple_intropattern(I) ":" constr(T) :=
asserts I: T; [ skip | ].
Tactic Notation "skip" ":" constr(T) :=
let H := fresh in skip H: T.
Tactic Notation "skip" simple_intropattern(I1)
simple_intropattern(I2) ":" constr(T) :=
skip [I1 I2]: T.
Tactic Notation "skip" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3) ":" constr(T) :=
skip [I1 [I2 I3]]: T.
Tactic Notation "skip" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) ":" constr(T) :=
skip [I1 [I2 [I3 I4]]]: T.
Tactic Notation "skip" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) simple_intropattern(I5) ":" constr(T) :=
skip [I1 [I2 [I3 [I4 I5]]]]: T.
Tactic Notation "skip" simple_intropattern(I1)
simple_intropattern(I2) simple_intropattern(I3)
simple_intropattern(I4) simple_intropattern(I5)
simple_intropattern(I6) ":" constr(T) :=
skip [I1 [I2 [I3 [I4 [I5 I6]]]]]: T.
Tactic Notation "skip_asserts" simple_intropattern(I) ":" constr(T) :=
skip I: T.
Tactic Notation "skip_asserts" ":" constr(T) :=
skip: T.
Tactic Notation "skip_cuts" constr(T) :=
cuts: T; [ skip | ].
skip_goal H applies to any goal. It simply assumes
the current goal to be true. The assumption is named "H".
It is useful to set up proof by induction or coinduction.
Syntax skip_goal is also accepted.
Tactic Notation "skip_goal" ident(H) :=
match goal with |- ?G ⇒ skip H: G end.
Tactic Notation "skip_goal" :=
let IH := fresh "IH" in skip_goal IH.
skip_rewrite T can be applied when T is an equality.
It blindly assumes this equality to be true, and rewrite it in
the goal.
Tactic Notation "skip_rewrite" constr(T) :=
let M := fresh in skip_asserts M: T; rewrite M; clear M.
Tactic Notation "skip_rewrite" constr(T) "in" hyp(H) :=
let M := fresh in skip_asserts M: T; rewrite M in H; clear M.
skip_rewrites_all T is similar as rewrite_skip, except that
it rewrites everywhere (goal and all hypotheses).
Tactic Notation "skip_rewrite_all" constr(T) :=
let M := fresh in skip_asserts M: T; rewrite_all M; clear M.
skip_induction E applies to any goal. It simply assumes
the current goal to be true (the assumption is named "IH" by
default), and call destruct E instead of induction E.
It is useful to try and set up a proof by induction
first, and fix the applications of the induction hypotheses
during a second pass on the proof.
Tactic Notation "skip_induction" constr(E) :=
let IH := fresh "IH" in skip_goal IH; destruct E.
Tactic Notation "skip_induction" constr(E) "as" simple_intropattern(I) :=
let IH := fresh "IH" in skip_goal IH; destruct E as I.
Compatibility with standard library
Module LibTacticsCompatibility.
Tactic Notation "apply" "*" constr(H) :=
sapply H; auto_star.
Tactic Notation "subst" "*" :=
subst; auto_star.
End LibTacticsCompatibility.
Open Scope nat_scope.